1
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Król-Górniak A, Pomastowski P, Railean-Plugaru V, Žuvela P, Wong MW, Pauter K, Szultka-Młyńska M, Buszewski B. The study of the molecular mechanism of Lactobacillus paracasei clumping via divalent metal ions by electrophoretic separation. J Chromatogr A 2021; 1652:462127. [PMID: 34214833 DOI: 10.1016/j.chroma.2021.462127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
In this work, the molecular mechanism of Lactobacillus paracasei bio-colloid clumping under divalent metal ions treatment such as zinc, copper and magnesium at constant concentrations was studied. The work involved experimental (electrophoretic - capillary electrophoresis in pseudo-isotachophoresis mode, spectroscopic and spectrometric - FT-IR and MALDI-TOF-MS, microscopic - fluorescent microscopy, and flow cytometry) and theoretical (DFT calculations of model complex systems) characterization. Electrophoretic results have pointed out the formation of aggregates under the Zn2+ and Cu2+ modification, whereas the use of the Mg2+ allowed focusing the zone of L. paracasei biocolloid. According to the FT-IR analysis, the major functional groups involved in the aggregation are deprotonated carboxyl and amide groups derived from the bacterial surface structure. Nature of the divalent metal ions was shown to be one of the key factors influencing the bacterial aggregation process. Proteomic analysis showed that surface modification had a considerable impact on bacteria molecular profiles and protein expression, mainly linked to the activation of carbohydrate and nucleotides metabolism as well with the transcription regulation and membrane transport. Density-functional theory (DFT) calculations of modeled Cu2+, Mg2+ and Zn2+ coordination complexes support the interaction between the divalent metal ions and bacterial proteins. Consequently, the possible mechanism of the aggregation phenomenon was proposed. Therefore, this comprehensive study could be further applied in evaluation of biocolloid aggregation under different types of metal ions.
Collapse
Affiliation(s)
- Anna Król-Górniak
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Petar Žuvela
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Katarzyna Pauter
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland.
| |
Collapse
|
3
|
Bednarek PT, Orłowska R. CG Demethylation Leads to Sequence Mutations in an Anther Culture of Barley Due to the Presence of Cu, Ag Ions in the Medium and Culture Time. Int J Mol Sci 2020; 21:E4401. [PMID: 32575771 PMCID: PMC7353013 DOI: 10.3390/ijms21124401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
During plant tissue cultures the changes affecting regenerants have a broad range of genetic and epigenetic implications. These changes can be seen at the DNA methylation and sequence variation levels. In light of the latest studies, DNA methylation change plays an essential role in determining doubled haploid (DH) regenerants. The present study focuses on exploring the relationship between DNA methylation in CG and CHG contexts, and sequence variation, mediated by microelements (CuSO4 and AgNO3) supplemented during barley anther incubation on induction medium. To estimate such a relationship, a mediation analysis was used based on the results previously obtained through metAFLP method. Here, an interaction was observed between DNA demethylation in the context of CG and the time of culture. It was also noted that the reduction in DNA methylation was associated with a total decrease in the amount of Cu and Ag ions in the induction medium. Moreover, the total increase in Cu and Ag ions increased sequence variation. The importance of the time of tissue culture in the light of the observed changes resulted from the grouping of regenerants obtained after incubation on the induction medium for 28 days. The present study demonstrated that under a relatively short time of tissue culture (28 days), the multiplication of the Cu2+ and Ag+ ion concentrations ('Cu*Ag') acts as a mediator of demethylation in CG context. Change (increase) in the demethylation in CG sequence results in the decrease of 'Cu*Ag', and that change induces sequence variation equal to the value of the indirect effect. Thus, Cu and Ag ions mediate sequence variation. It seems that the observed changes at the level of methylation and DNA sequence may accompany the transition from direct to indirect embryogenesis.
Collapse
Affiliation(s)
- Piotr T. Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, 05–870 Błonie, Radzików, Poland;
| | | |
Collapse
|
4
|
André C, Gagné F. Effect of the periodic properties of toxic stress on the oscillatory behaviour of glycolysis in yeast-evidence of a toxic effect frequency. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:36-43. [PMID: 28286097 DOI: 10.1016/j.cbpc.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Starving and nondividing yeast cells induce changes in the electron donor nicotinamide adenine dinucleotide (NADH) levels in a cyclic and wave-like manner for over 90min. Yeast suspensions were used to examine the toxic effects of contaminants on the cyclic behaviour of metabolite changes during anaerobic glycolysis. The cyclic behaviour NADH levels in yeast cell suspensions starved for 2 to 5h was studied after the addition of 10mM glucose for 5min followed by 10mM KCN to block aerobic glycolysis. The effects of three toxic elements (CuSO4, silver nanoparticles-nAg, and GdCl3), known for their potential to alter glycolsysis, on NADH levels over time were examined during the 3-h starvation step. The data were analyzed using spectral analysis (Fourier transformation) to characterize the cyclic behaviour of NADH levels during anaerobic glycolysis. Increasing the starvation time by 3h increased the amplitude of changes in NADH levels with characteristic periods of 3 to 8min. Longer starvation times decreased the amplitude of oscillations during these periods, with the appearance of NADH changes at higher frequencies. Moreover, the amplitude changes in NADH were proportional to the starvation time. Exposure to the above chemicals during the 3-h starvation time led to the formation of higher frequencies with concentration-dependent amplitude changes. In comparison with nAg and Gd3+, Cu2+ was the most toxic (decreased viability the most) and produce changes at higher frequencies as well. It is noteworthy that each element produced a characteristic change in the frequency profiles, which suggests different mechanisms of action in which the severity of toxicity shifted NADH changes at higher frequencies. In conclusion, the appearance of synchronized oscillations in dense yeast populations following synchronization stress could be induced by starvation and exposure to chemicals. However, synchronicity could be abolished when cells desynchronize as a result of loss of cell viability, which contributes to heterogeneity in yeast populations, translating into NADH changes at higher frequencies. This is the first report on the influence of environmental contaminants on the cyclic or wave-like behaviour of biochemical changes in cells.
Collapse
Affiliation(s)
- C André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St., Montréal, QC H2Y 2E7, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill St., Montréal, QC H2Y 2E7, Canada.
| |
Collapse
|
5
|
Tavsan Z, Ayar Kayali H. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum. Appl Biochem Biotechnol 2015; 176:76-85. [DOI: 10.1007/s12010-015-1535-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
|
6
|
Valdivia-González M, Pérez-Donoso JM, Vásquez CC. Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals 2012; 25:451-8. [PMID: 22234496 DOI: 10.1007/s10534-012-9518-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/29/2011] [Indexed: 11/24/2022]
Abstract
To unveil the metabolic impact of tellurite in the bacterial cell, the effect of this toxicant on the expression and activity of key enzymes of the Escherichia coli glycolytic pathway was analyzed. E. coli exposure to tellurite results in: (i) increased glucose consumption, which was paralleled by an increased expression of the glucose transporter-encoding gene ptsG, (ii) augmented phosphoglucoisomerase activity and pgi transcription, (iii) decreased activity of the enzymatic regulators phosphofructokinase and pyruvate kinase. In spite of these observations, increased intracellular pyruvate, phosphoenol pyruvate and phosphorylated sugars was observed. E. coli lacking key glycolytic enzymes was considerably more sensitive to tellurite than the parental, isogenic, wild type strain. Taken together, these results suggest that increasing the availability of key metabolites (pyruvate, phosphoenol pyruvate, NADPH), required to respond to tellurite mediated-stress, E. coli shifts the carbon flux towards the pentose phosphate pathway thus facilitating the functioning of the Entner-Doudoroff pathway and/or the glycolytic productive phase.
Collapse
Affiliation(s)
- Mauricio Valdivia-González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | | |
Collapse
|
7
|
Salviati L, Hernandez-Rosa E, Walker WF, Sacconi S, DiMauro S, Schon EA, Davidson MM. Copper supplementation restores cytochrome c oxidase activity in cultured cells from patients with SCO2 mutations. Biochem J 2002; 363:321-7. [PMID: 11931660 PMCID: PMC1222481 DOI: 10.1042/0264-6021:3630321] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human SCO2 is a nuclear-encoded Cu-binding protein, presumed to be responsible for the insertion of Cu into the mitochondrial cytochrome c oxidase (COX) holoenzyme. Mutations in SCO2 are associated with cardioencephalomyopathy and COX deficiency. Studies in yeast and bacteria have shown that Cu supplementation can restore COX activity in cells harbouring mutations in genes involving Cu transport. Therefore we investigated whether Cu supplementation could restore COX activity in cultured cells from patients with SCO2 mutations. Our data demonstrate that the COX deficiency observed in fibroblasts, myoblasts and myotubes from patients with SCO2 mutations can be restored to almost normal levels by the addition of CuCl(2) to the growth medium.
Collapse
Affiliation(s)
- Leonardo Salviati
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
| | | | | | | | | | | | | |
Collapse
|
8
|
Ronimus RS, Kawarabayasi Y, Kikuchi H, Morgan HW. Cloning, expression and characterisation of a Family B ATP-dependent phosphofructokinase activity from the hyperthermophilic crenarachaeon Aeropyrum pernix. FEMS Microbiol Lett 2001; 202:85-90. [PMID: 11506912 DOI: 10.1111/j.1574-6968.2001.tb10784.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have cloned a Family B sugar kinase gene from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix and have subsequently expressed the protein in Escherichia coli. The enzyme was purified with its associated histidine-tag by affinity chromatography with a nickel-nitrilotriacetic acid column followed by cation exchange chromatography and possesses a high degree of thermostable ATP-dependent phosphofructokinase activity. The enzyme has an estimated apparent K(m) for ATP and fructose-6-phosphate of 0.027 and 1.212 mM, respectively, that were determined in discontinuous assays at 95 degrees C. The Family B ATP-dependent phosphofructokinase has a half-life of approximately 30 min at 95 degrees C and is indicated to be monomeric. The implications of the presence of a Family B phosphofructokinase in the Crenarchaea are discussed with reference to the origins of the Embden-Meyerhof pathway.
Collapse
Affiliation(s)
- R S Ronimus
- Thermophile Research Unit, University of Waikato, Hamilton, New Zealand.
| | | | | | | |
Collapse
|