1
|
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone-The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins (Basel) 2024; 16:528. [PMID: 39728786 PMCID: PMC11678992 DOI: 10.3390/toxins16120528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure-activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott-Aldrich Syndrome protein (WASP)/neural Wiskott-Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed.
Collapse
Affiliation(s)
| | - Kingsley Bampoe Asiedu
- Department of Neglected Tropical Diseases, World Health Organization, 1211 Geneva, Switzerland;
| | | |
Collapse
|
2
|
Dermody R, Ali F, Popovich J, Chen S, Seo DK, Haydel SE. Modified aluminosilicates display antibacterial activity against nontuberculous mycobacteria and adsorb mycolactone and Mycobacterium ulcerans in vitro. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.1016426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mycobacterium ulcerans (MU) infection of skin and soft tissue leads to chronic skin ulceration known as Buruli ulcer. MU releases a lipid-like toxin, mycolactone, that diffuses into the tissue, effecting disease through localized tissue necrosis and immunosuppression. Cutaneous Buruli ulcer wounds slowly advance from a painless pre-ulcerative stage to an ulcerative lesion, leading to disparities in the timing of medical intervention and treatment outcomes. Novel Buruli ulcer wound management solutions could complement and supplement systemically administered antimicrobials and reduce time to healing. Capitalizing on nanopore structure, adsorption, and exchange capacities, aluminosilicate nanozeolites (nZeos) and geopolymers (GPs) were developed and investigated in the context of therapeutics for mycobacterial disease ulcerative wound care. nZeos were ion exchanged with copper or silver to assess the antimicrobial activity against MU and Mycobacterium marinum, a rapid growing, genetic ancestor of MU that also causes skin and soft tissue infections. Silver- and copper-exchanged nZeos were bactericidal against MU, while only silver-exchanged nZeos killed M. marinum. To mediate adsorption at a biological scale, GPs with different pore sizes and altered surface modifications were generated and assessed for the ability to adsorb MU and mycolactone. Macroporous GPs with and without stearic acid modification equivalently adsorbed MU cells, while mesoporous GPs with stearic acid adsorbed mycolactone toxin significantly better than mesoporous GPs or GPs modified with phenyltriethoxysilane (PTES). In cytotoxicity assays, Cu-nZeos lacked toxicity against Detroit 551, U-937, and WM-115 cells. GPs demonstrated limited cytotoxicity in Detroit 551 and WM-115, but produced time-dependent toxicity in U-937 cells. With their large surface area and adsorptive capacities, aluminosilicates nZeos and GPs may be modified and developed to support conventional BU wound care. Topical application of nZeos and GPs could kill MU within the cutaneous wound environment and physically remove MU and mycolactone with wound dressing changes, thereby improving wound healing and overall patient outcomes.
Collapse
|
3
|
A protocol for culturing environmental strains of the Buruli ulcer agent, Mycobacterium ulcerans. Sci Rep 2018; 8:6778. [PMID: 29712992 PMCID: PMC5928104 DOI: 10.1038/s41598-018-25278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
Contaminations and fastidiousness of M. ulcerans may have both hamper isolation of strains from environmental sources. We aimed to optimize decontamination and culture of environmental samples to circumvent both limitations. Three strains of M. ulcerans cultured onto Middlebrook 7H10 at 30 °C for 20 days yielded a significantly higher number of colonies in micro-aerophilic atmosphere compared to ambient atmosphere, 5% CO2 and anaerobic atmosphere. In a second step, we observed that M. ulcerans genome uniquely encoded chitinase, fucosidase and A-D-GlcNAc-diphosphoryl polyprenol A-3-L-rhamnosyl transferase giving M. ulcerans the potential to metabolize chitine, fucose and N-acetyl galactosamine (NAG), respectively. A significant growth-promoting effect of 0.2 mg/mL chitin (p < 0.05), 0.01 mg/mL N-acetyl galactosamine (p < 0.05), 0.01 mg/mL fucose (p < 0.05) was observed with M. ulcerans indicating that NAG alone or combined with fucose and chitin could complement Middlebrook 7H10. Finally, the protocol combining 1% chlorhexidine decontamination with micro-aerophilic incubation on Middlebrook 7H10 medium containing chitin (0.2%), NAG (0.01%) and fucose (0.01%) medium and auto-fluorescence detection of colonies allowed for the isolation of one mycolactone-encoding strain from Thryonomys swinderianus (aulacode) feces specimens collected near the Kossou Dam, Côte d'Ivoire. We propose that incubation of chlorhexidine-decontaminated environmental specimens on Middlebrook 7H10-enriched medium under micro-aerophilic atmosphere at 30 °C may be used for the tentative isolation of M. ulcerans strains from potential environmental sources.
Collapse
|
4
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Brown CA, Aggarwal VK. Short Convergent Synthesis of the Mycolactone Core Through Lithiation-Borylation Homologations. Chemistry 2015; 21:13900-3. [PMID: 26332797 PMCID: PMC6519258 DOI: 10.1002/chem.201503122] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Using iterative lithiation-borylation homologations, the mycolactone toxin core has been synthesized in 13 steps and 17% overall yield. The rapid build-up of molecular complexity, high convergence and high stereoselectivity are noteworthy features of this synthesis.
Collapse
Affiliation(s)
- Christopher A Brown
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK)
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS (UK).
| |
Collapse
|
6
|
Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl Trop Dis 2014; 8:e2770. [PMID: 24722416 PMCID: PMC3983084 DOI: 10.1371/journal.pntd.0002770] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Transmission of M. ulcerans, the etiological agent of Buruli ulcer, from the environment to humans remains an enigma despite decades of research. Major transmission hypotheses propose 1) that M. ulcerans is acquired through an insect bite or 2) that bacteria enter an existing wound through exposure to a contaminated environment. In studies reported here, a guinea pig infection model was developed to determine whether Buruli ulcer could be produced through passive inoculation of M. ulcerans onto a superficial abrasion. The choice of an abrasion model was based on the fact that most bacterial pathogens infecting the skin are able to infect an open lesion, and that abrasions are extremely common in children. Our studies show that after a 90d infection period, an ulcer was present at intra-dermal injection sites of all seven animals infected, whereas topical application of M. ulcerans failed to establish an infection. Mycobacterium ulcerans was cultured from all injection sites whereas infected abrasion sites healed and were culture negative. A 14d experiment was conducted to determine how long organisms persisted after inoculation. Mycobacterium ulcerans was isolated from abrasions at one hour and 24 hours post infection, but cultures from later time points were negative. Abrasion sites were qPCR positive up to seven days post infection, but negative at later timepoints. In contrast, M. ulcerans DNA was detected at intra-dermal injection sites throughout the study. M. ulcerans was cultured from injection sites at each time point. These results suggest that injection of M. ulcerans into the skin greatly facilitates infection and lends support for the role of an invertebrate vector or other route of entry such as a puncture wound or deep laceration where bacteria would be contained within the lesion. Infection through passive inoculation into an existing abrasion appears a less likely route of entry.
Collapse
|
7
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
8
|
Structure-activity relationship studies on the macrolide exotoxin mycolactone of Mycobacterium ulcerans. PLoS Negl Trop Dis 2013; 7:e2143. [PMID: 23556027 PMCID: PMC3610637 DOI: 10.1371/journal.pntd.0002143] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/14/2013] [Indexed: 01/28/2023] Open
Abstract
Background Mycolactones are a family of polyketide-derived macrolide exotoxins produced by Mycobacterium ulcerans, the causative agent of the chronic necrotizing skin disease Buruli ulcer. The toxin is synthesized by polyketide synthases encoded by the virulence plasmid pMUM. The apoptotic, necrotic and immunosuppressive properties of mycolactones play a central role in the pathogenesis of M. ulcerans. Methodology/Principal Findings We have synthesized and tested a series of mycolactone derivatives to conduct structure-activity relationship studies. Flow cytometry, fluorescence microscopy and Alamar Blue-based metabolic assays were used to assess activities of mycolactones on the murine L929 fibroblast cell line. Modifications of the C-linked upper side chain (comprising C12–C20) caused less pronounced changes in cytotoxicity than modifications in the lower C5-O-linked polyunsaturated acyl side chain. A derivative with a truncated lower side chain was unique in having strong inhibitory effects on fibroblast metabolism and cell proliferation at non-cytotoxic concentrations. We also tested whether mycolactones have antimicrobial activity and found no activity against representatives of Gram-positive (Streptococcus pneumoniae) or Gram-negative bacteria (Neisseria meningitis and Escherichia coli), the fungus Saccharomyces cerevisae or the amoeba Dictyostelium discoideum. Conclusion Highly defined synthetic compounds allowed to unambiguously compare biological activities of mycolactones expressed by different M. ulcerans lineages and may help identifying target structures and triggering pathways. Buruli ulcer is a chronic necrotizing skin disease caused by Mycobacterium ulcerans. The characteristic histopathological features of Buruli ulcer, severe destruction of subcutaneous tissue with minimal inflammation in the core of the lesion, are primarily attributed to the cytotoxic activity of mycolactone, the macrolide exotoxin of M. ulcerans. Different geographical lineages of M. ulcerans produce different structural variants of mycolactone. By using highly defined synthetic mycolactones, including both naturally occurring molecular species and additional non-natural variants, we have assessed the influence of the structure of the C-linked upper side chain and the lower C5-O-linked polyunsaturated acyl side chain on biological activity. Changes in the lower side chain affected the cytotoxic activity against mammalian cells more profoundly than changes in the upper side chain. Mycolactone A/B had no antimicrobial activity against Gram-positive and Gram-negative bacteria and was also inactive against Saccharomyces and Dictyostelium.
Collapse
|
9
|
Ko KS, Alexander MD, Fontaine SD, Biggs-Houck JE, La Clair JJ, Burkart MD. Synthetic studies on the mycolactone core. Org Biomol Chem 2010; 8:5159-65. [DOI: 10.1039/c0ob00540a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Hong H, Coutanceau E, Leclerc M, Caleechurn L, Leadlay PF, Demangel C. Mycolactone diffuses from Mycobacterium ulcerans-infected tissues and targets mononuclear cells in peripheral blood and lymphoid organs. PLoS Negl Trop Dis 2008; 2:e325. [PMID: 18941518 PMCID: PMC2565835 DOI: 10.1371/journal.pntd.0000325] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/26/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Buruli ulcer (BU) is a progressive disease of subcutaneous tissues caused by Mycobacterium ulcerans. The pathology of BU lesions is associated with the local production of a diffusible substance, mycolactone, with cytocidal and immunosuppressive properties. The defective inflammatory responses in BU lesions reflect these biological properties of the toxin. However, whether mycolactone diffuses from infected tissues and suppresses IFN-gamma responses in BU patients remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we have investigated the pharmacodistribution of mycolactone following injection in animal models by tracing a radiolabeled form of the toxin, and by directly quantifying mycolactone in lipid extracts from internal organs and cell subpopulations. We show that subcutaneously delivered mycolactone diffused into mouse peripheral blood and accumulated in internal organs with a particular tropism for the spleen. When mice were infected subcutaneously with M. ulcerans, this led to a comparable pattern of distribution of mycolactone. No evidence that mycolactone circulated in blood serum during infection could be demonstrated. However, structurally intact toxin was identified in the mononuclear cells of blood, lymph nodes and spleen several weeks before ulcerative lesions appear. Importantly, diffusion of mycolactone into the blood of M. ulcerans-infected mice coincided with alterations in the functions of circulating lymphocytes. CONCLUSION In addition to providing the first evidence that mycolactone diffuses beyond the site of M. ulcerans infection, our results support the hypothesis that the toxin exerts immunosuppressive effects at the systemic level. Furthermore, they suggest that assays based on mycolactone detection in circulating blood cells may be considered for diagnostic tests of early disease.
Collapse
Affiliation(s)
- Hui Hong
- University of Cambridge, Department of Biochemistry, Cambridge, United Kingdom
| | | | - Marion Leclerc
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Laxmee Caleechurn
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Peter F. Leadlay
- University of Cambridge, Department of Biochemistry, Cambridge, United Kingdom
| | - Caroline Demangel
- Institut Pasteur, UP Pathogénomique Mycobactérienne Intégrée, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Hong H, Demangel C, Pidot SJ, Leadlay PF, Stinear T. Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep 2008; 25:447-54. [PMID: 18497894 PMCID: PMC2730631 DOI: 10.1039/b803101k] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 11/21/2022]
Abstract
Mycolactones are a family of highly related macrocyclic polyketides that exhibit immunosuppressive and cytotoxic properties. First discovered in 1999, they are the primary virulence factors produced by the environmental human pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer, and by some closely-related aquatic mycobacteria that cause disease in fish and frogs. Mycolactones are characterized by a common 12-membered lactone core to which is appended an unsaturated fatty acyl side-chain of variable length and oxidation state. This Highlight summarizes recent progress in understanding the structural diversity of the mycolactones, their biological activity and mode of action in mammalian cells, and the genetics, evolution, and enzymology of their biosynthesis.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | |
Collapse
|
12
|
Hong H, Stinear T, Porter J, Demangel C, Leadlay PF. A novel mycolactone toxin obtained by biosynthetic engineering. Chembiochem 2008; 8:2043-7. [PMID: 17907121 PMCID: PMC2699038 DOI: 10.1002/cbic.200700411] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Hong
- Sanger Building, Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1QW, (UK) E-mail:
| | - Tim Stinear
- Department of Microbiology, Monash UniversityWellington Road, Clayton, 3800, (Australia)
| | - Jessica Porter
- Department of Microbiology, Monash UniversityWellington Road, Clayton, 3800, (Australia)
| | - Caroline Demangel
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur28 rue du Docteur Roux, 75724 Paris Cedex 15, (France)
| | - Peter F Leadlay
- Sanger Building, Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1QW, (UK) E-mail:
| |
Collapse
|
13
|
Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, Aubry J, Milon G, Legras P, André JPS, Leroy C, Cottin J, Guillou MLJ, Reysset G, Cole ST. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 2007; 3:e62. [PMID: 17480118 PMCID: PMC1864991 DOI: 10.1371/journal.ppat.0030062] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 03/16/2007] [Indexed: 11/18/2022] Open
Abstract
The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM) that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis.
Collapse
Affiliation(s)
- Laurent Marsollier
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
- Equipe Avenir Inserm, Biology of Intracellular Pathogens, Institut Pasteur Korea, Seoul, South Korea
- * To whom correspondence should be addressed. E-mail: (LM); (PB); (STC)
| | - Priscille Brodin
- Equipe Avenir Inserm, Biology of Intracellular Pathogens, Institut Pasteur Korea, Seoul, South Korea
- * To whom correspondence should be addressed. E-mail: (LM); (PB); (STC)
| | - Mary Jackson
- Unité de Génétique Mycobactérienne, Insitut Pasteur, Paris, France
| | - Jana Korduláková
- Unité de Génétique Mycobactérienne, Insitut Pasteur, Paris, France
| | - Petra Tafelmeyer
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
- Plate Forme 3-Protéomique, Insitut Pasteur, Paris, France
| | | | - Jacques Aubry
- Université de Nantes, Nantes, France
- Inserm U601, Nantes, France
| | - Geneviève Milon
- Unité d'Immunophysiologie et Parasitisme Intracellulaire, Institut Pasteur, Paris, France
| | - Pierre Legras
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
| | - Jean-Paul Saint André
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
| | - Céline Leroy
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
| | - Jane Cottin
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
| | - Marie Laure Joly Guillou
- Groupe d'Etude des Interactions Hôtes Parasites et Animalerie Hospitalo-Universitaire, Université d'Angers, Angers, France
| | - Gilles Reysset
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
| | - Stewart T Cole
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France
- * To whom correspondence should be addressed. E-mail: (LM); (PB); (STC)
| |
Collapse
|
14
|
Ranger BS, Mahrous EA, Mosi L, Adusumilli S, Lee RE, Colorni A, Rhodes M, Small PLC. Globally distributed mycobacterial fish pathogens produce a novel plasmid-encoded toxic macrolide, mycolactone F. Infect Immun 2006; 74:6037-45. [PMID: 16923788 PMCID: PMC1695495 DOI: 10.1128/iai.00970-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans and Mycobacterium marinum are closely related pathogens which share an aquatic environment. The pathogenesis of these organisms in humans is limited by their inability to grow above 35 degrees C. M. marinum causes systemic disease in fish but produces localized skin infections in humans. M. ulcerans causes Buruli ulcer, a severe human skin lesion. At the molecular level, M. ulcerans is distinguished from M. marinum by the presence of a virulence plasmid which encodes a macrolide toxin, mycolactone, as well as by hundreds of insertion sequences, particularly IS2404. There has been a global increase in reports of fish mycobacteriosis. An unusual clade of M. marinum has been reported from fish in the Red and Mediterranean Seas and a new mycobacterial species, Mycobacterium pseudoshottsii, has been cultured from fish in the Chesapeake Bay, United States. We have discovered that both groups of fish pathogens produce a unique mycolactone toxin, mycolactone F. Mycolactone F is the smallest mycolactone (molecular weight, 700) yet identified. The core lactone structure of mycolactone F is identical to that of M. ulcerans mycolactones, but a unique side chain structure is present. Mycolactone F produces apoptosis and necrosis on cultured cells but is less potent than M. ulcerans mycolactones. Both groups of fish pathogens contain IS2404. In contrast to M. ulcerans and conventional M. marinum, mycolactone F-producing mycobacteria are incapable of growth at above 30 degrees C. This fact is likely to limit their virulence for humans. However, such isolates may provide a reservoir for horizontal transfer of the mycolactone plasmid in aquatic environments.
Collapse
Affiliation(s)
- Brian S Ranger
- Department of Microbiology, 409 Walters Life Sciences, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Adusumilli S, Mve-Obiang A, Sparer T, Meyers W, Hayman J, Small PLC. Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol 2006; 7:1295-304. [PMID: 16098217 DOI: 10.1111/j.1462-5822.2005.00557.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mycobacterium ulcerans produces an extracellular cutaneous infection (Buruli ulcer) characterized by immunosuppression. This is in stark contrast to all other pathogenic Mycobacteria species that cause intracellular, granulomatous infections. The unique mycobacterial pathology of M. ulcerans infection is attributed to a plasmid-encoded immunomodulatory macrolide toxin, mycolactone. In this article we explore the role of mycolactone in the virulence of M. ulcerans using mycolactone and genetically defined mycolactone negative mutants. In a guinea pig infection model wild-type (WT) M. ulcerans produces an extracellular infection whereas mycolactone negative mutants produce an intracellular inflammatory infection similar to that of Mycobacterium marinum. Although mycolactone negative mutants are avirulent, they persist for at least 6 weeks. Chemical complementation of M. ulcerans mutants with mycolactone restores WT M. ulcerans pathology. Mycolactone negative mutants are capable of growth within macrophages in vitro whereas macrophages are killed by WT M. ulcerans. The ability of mycolactone to caused delayed cell death via apoptosis has been reported. However, mycolactone also causes cell death via necrosis. In vitro mycolactone has antiphagocytic properties. Neither WT M. ulcerans nor mycolactone negative strains are strong neutrophil attractants. These results suggest that mycolactone is largely responsible for the unique pathology produced by M. ulcerans.
Collapse
|
16
|
Mve-Obiang A, Lee RE, Umstot ES, Trott KA, Grammer TC, Parker JM, Ranger BS, Grainger R, Mahrous EA, Small PLC. A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect Immun 2005; 73:3307-12. [PMID: 15908356 PMCID: PMC1111873 DOI: 10.1128/iai.73.6.3307-3312.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium ulcerans, the causative agent of Buruli ulcer, produces a macrolide toxin, mycolactone A/B, which is thought to play a major role in virulence. A disease similar to Buruli ulcer recently appeared in United States frog colonies following importation of the West African frog, Xenopus tropicalis. The taxonomic position of the frog pathogen has not been fully elucidated, but this organism, tentatively designated Mycobacterium liflandii, is closely related to M. ulcerans and Mycobacterium marinum, and as further evidence is gathered, it will most likely be considered a subspecies of one of these species. In this paper we show that M. liflandii produces a novel plasmid-encoded mycolactone, mycolactone E. M. liflandii contains all of the genes in the mycolactone cluster with the exception of that encoding CYP140A2, a putative p450 monooxygenase. Although the core lactone structure is conserved in mycolactone E, the fatty acid side chain differs from that of mycolactone A/B in the number of hydroxyl groups and double bonds. The cytopathic phenotype of mycolactone E is identical to that of mycolactone A/B, although it is less potent. To further characterize the relationship between M. liflandii and M. ulcerans, strains were analyzed for the presence of the RD1 region genes, esxA (ESAT-6) and esxB (CFP-10). The M. ulcerans genome strain has a deletion in RD1 and lacks these genes. The results of these studies show that M. liflandii contains both esxA and esxB.
Collapse
Affiliation(s)
- Armand Mve-Obiang
- Department of Microbiology, 409 Walters Life Sciences, University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hong H, Spencer JB, Porter JL, Leadlay PF, Stinear T. A Novel Mycolactone from a Clinical Isolate of Mycobacterium ulcerans Provides Evidence for Additional Toxin Heterogeneity as a Result of Specific Changes in the Modular Polyketide Synthase. Chembiochem 2005; 6:643-8. [PMID: 15750996 DOI: 10.1002/cbic.200400339] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Hong
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | | | |
Collapse
|
18
|
Hong H, Stinear T, Skelton P, Spencer JB, Leadlay PF. Structure elucidation of a novel family of mycolactone toxins from the frog pathogen Mycobacterium sp. MU128FXT by mass spectrometry. Chem Commun (Camb) 2005:4306-8. [PMID: 16113730 DOI: 10.1039/b506835e] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structures are proposed, based on LC-ion trap MSn analysis and high-resolution FTICR MS/MS analysis, for a novel family of mycolactone toxins isolated from the frog pathogen MU128FXT and differing from those produced by the human pathogen M. ulcerans MUAgy99 in having an altered polyketide side chain.
Collapse
Affiliation(s)
- Hui Hong
- Departments of Chemistry and Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
19
|
Mve-Obiang A, Lee RE, Portaels F, Small PLC. Heterogeneity of mycolactones produced by clinical isolates of Mycobacterium ulcerans: implications for virulence. Infect Immun 2003; 71:774-83. [PMID: 12540557 PMCID: PMC145382 DOI: 10.1128/iai.71.2.774-783.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a severe necrotizing skin disease endemic in tropical countries. Clinical evidence suggests that M. ulcerans isolates from Asia, Mexico, and Australia may be less virulent than isolates from Africa. In vivo studies suggest that mycolactone, a polyketide-derived macrolide toxin, plays a major role in the tissue destruction and immune suppression which occur in cases of Buruli ulcer. Mycolactones were extracted from 34 isolates of M. ulcerans representing strains from Africa, Malaysia, Asia, Australia, and Mexico. Thin-layer chromatography, mass spectroscopic analysis, and cytopathic assays of partially purified mycolactones from these isolates revealed that M. ulcerans produces a heterogeneous mixture of mycolactone variants. Mycolactone A/B, the most biologically active mycolactone species, was identified by mass spectroscopy as [M(+)Na](+) at m/z 765.5 in all cytotoxic isolates except for those from Mexico. Mycolactone C [M+Na](+) at m/z 726.3 was the dominant mycolactone species in eight Australian isolates, and mycolactone D [M+Na](+) m/z 781.2 was characteristic of two Asian strains. Mycolactone species are conserved within specific geographic areas, suggesting that there may be a correlation between mycolactone profile and virulence. In addition, the core lactone, [M+Na](+) m/z 447.4, was identified as a minor species, supporting the hypothesis that mycolactones are synthesized by two polyketide synthases. A cytopathic assay of the core lactone showed that this molecule is sufficient for cytotoxicity, although it is much less potent than the complete mycolactone.
Collapse
|