1
|
Opperdoes FR, Záhonová K, Škodová-Sveráková I, Bučková B, Chmelová Ľ, Lukeš J, Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 2024; 25:184. [PMID: 38365628 PMCID: PMC10874023 DOI: 10.1186/s12864-024-10094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
Collapse
Affiliation(s)
- Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
2
|
Kaushal RS, Naik N, Prajapati M, Rane S, Raulji H, Afu NF, Upadhyay TK, Saeed M. Leishmania species: A narrative review on surface proteins with structural aspects involved in host-pathogen interaction. Chem Biol Drug Des 2023; 102:332-356. [PMID: 36872849 DOI: 10.1111/cbdd.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
In tropical and subtropical regions of the world, leishmaniasis is endemic and causes a range of clinical symptoms in people, from severe tegumentary forms (such as cutaneous, mucocutaneous, and diffuse leishmaniasis) to lethal visceral forms. The protozoan parasite of the genus Leishmania causes leishmaniasis, which is still a significant public health issue, according to the World Health Organization 2022. The public's worry about the neglected tropical disease is growing as new foci of the illness arise, which are exacerbated by alterations in behavior, changes in the environment, and an enlarged range of sand fly vectors. Leishmania research has advanced significantly during the past three decades in a few different avenues. Despite several studies on Leishmania, many issues, such as illness control, parasite resistance, parasite clearance, etc., remain unresolved. The key virulence variables that play a role in the pathogenicity-host-pathogen relationship of the parasite are comprehensively discussed in this paper. The important Leishmania virulence factors, such as Kinetoplastid Membrane Protein-11 (KMP-11), Leishmanolysin (GP63), Proteophosphoglycan (PPG), Lipophosphoglycan (LPG), Glycosylinositol Phospholipids (GIPL), and others, have an impact on the pathophysiology of the disease and enable the parasite to spread the infection. Leishmania infection may arise from virulence factors; they are treatable with medications or vaccinations more promptly and might greatly shorten the duration of treatment. Additionally, our research sought to present a modeled structure of a few putative virulence factors that might aid in the development of new chemotherapeutic approaches for the treatment of leishmaniasis. The predicted virulence protein's structure is utilized to design novel drugs, therapeutic targets, and immunizations for considerable advantage from a higher understanding of the host immune response.
Collapse
Affiliation(s)
- Radhey Shyam Kaushal
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Nidhi Naik
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Maitri Prajapati
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Shruti Rane
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Himali Raulji
- Department of Microbiology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Ngo Festus Afu
- Department of Biochemistry, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, 391760, Gujarat, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Ha'il, P.O. Box 2440, Hail, 81411, Saudi Arabia
| |
Collapse
|
3
|
Pandey SC, Kumar A, Samant M. Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis. Parasite Immunol 2020; 42:e12732. [PMID: 32418227 DOI: 10.1111/pim.12732] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Visceral leishmaniasis (VL) is caused by a protozoan parasite Leishmania donovani mainly influencing the population of tropical and subtropical regions across the globe. The arsenal of drugs available is limited, and prolonged use of such drugs makes parasite to become resistant. Therefore, it is very imperative to develop a safe, cost-effective and inexpensive vaccine against VL. Although in recent years, many strategies have been pursued by researchers, so far only some of the vaccine candidates reached for clinical trial and more than half of them are still in pipeline. There is now a broad consent among Leishmania researchers that the perseverance of parasite is very essential for eliciting a protective immune response and may perhaps be attained by live attenuated parasite vaccination. For making a live attenuated parasite, it is very essential to ensure that the parasite is deficient of virulence and should further study genetically modified parasites to perceive the mechanism of pathogenesis. So it is believed that in the near future, a complete understanding of the Leishmania genome will explore clear strategies to discover a novel vaccine. This review describes the need for a genetically modified live attenuated vaccine against VL, and obstacles associated with its development.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Mukesh Samant
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India
| |
Collapse
|
4
|
A 245kb mini-chromosome impacts on Leishmania braziliensis infection and survival. Biochem Biophys Res Commun 2009; 382:74-8. [PMID: 19254695 DOI: 10.1016/j.bbrc.2009.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022]
Abstract
Leishmania (V.) braziliensis, the causative agent of mucocutaneous leishmaniasis in the New World, may present an LD1 type genomic amplification that appears as a small 245 kb linear chromosome, and is not clearly associated to the presence of a selection agent. A bt1 gene, codifying for a biopterin transporter protein, was identified in this small chromosome. Leishmania are auxotrophic for pterins and one of the proposed explanations for the appearance of this amplification is the improvement of biopterin capture by the parasite. We analyzed some biological aspects of two lineages of L. braziliensis strain M2903, with and without the small amplified chromosome. We showed differences in infectivity of these lineages, in macrophages and the insect vector Lutzomyia longipalpis, as well as in the uptake and metabolization of intermediates of the Leishmania biopterin salvage pathway. Our results suggest that the genomic amplification favors survival due to improved biopterin capture and at the same time hinders the infective capability, suggesting that within a population different parasites can perform different roles.
Collapse
|
5
|
Klaus SMJ, Kunji ERS, Bozzo GG, Noiriel A, de la Garza RD, Basset GJC, Ravanel S, Rébeillé F, Gregory JF, Hanson AD. Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 2005; 280:38457-63. [PMID: 16162503 DOI: 10.1074/jbc.m507432200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacterial and plant genomes encode proteins with some similarity to the folate and biopterin transporters of the trypanosomatid parasite Leishmania. The Synechocystis slr0642 gene product and its closest Arabidopsis homolog, the At2g32040 gene product, are representative examples. Both have 12 probable transmembrane domains, and the At2g32040 protein has a predicted chloroplast transit peptide. When expressed in Escherichia coli pabA pabB or folE, mutants, which are unable to produce or take up folates, the slr0642 protein and a modified At2g32040 protein (truncated and fused to the N terminus of slr0642) enabled growth on 5-formyltetrahydrofolate or folic acid but not on 5-formyltetrahydrofolate triglutamate, demonstrating that both proteins mediate folate monoglutamate transport. Both proteins also mediate transport of the antifolate analogs methotrexate and aminopterin, as evidenced by their ability to greatly increase the sensitivity of E. coli to these inhibitors. The full-length At2g32040 polypeptide was translocated into isolated pea chloroplasts and, when fused to green fluorescent protein, directed the passenger protein to the envelope of Arabidopsis chloroplasts in transient expression experiments. At2g32040 transcripts were present at similar levels in roots and aerial organs, indicating that the protein occurs in non-green plastids as well as chloroplasts. Insertional inactivation of At2g32040 significantly raised the total folate content of chloroplasts and lowered the proportion of 5-methyltetrahydrofolate but did not discernibly affect growth. These findings establish conservation of function among folate and biopterin transporter family proteins from three kingdoms of life.
Collapse
Affiliation(s)
- Sebastian M J Klaus
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Choi HJ, Kim SW, Im JH, Lee SG, Kim M, Hwang O. Utilization of exogenous tetrahydrobiopterin in nitric oxide synthesis in human neuroblastoma cell line. Neurosci Lett 2003; 352:89-92. [PMID: 14625030 DOI: 10.1016/j.neulet.2003.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We and others have previously reported that neurons expressing neuronal nitric oxide synthase (nNOS) do not co-express GTP cyclohydrolase I, the enzyme that synthesize its cofactor tetrahydrobiopterin (BH4). BH4 is released from catecholaminergic cells and nNOS-expressing cells are located close to BH4-producing catecholaminergic nerve terminals. We show that BH4 is taken up into the nNOS-expressing human neuroblastoma cells TGW-I-nu in a linear, dose-dependent manner and elevates NO production. Direct exposure to BH4, dihydrobiopterin or biopterin, or coculture with catecholaminergic CATH.a cells increases NO production by TGW-I-nu. Thus, BH4-requiring nNOS cells may obtain BH4 from neighboring catecholaminergic cells or terminals and an intercellular crosstalk may exist between the two cells in vivo.
Collapse
Affiliation(s)
- Hyun Jin Choi
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul 138-736, South Korea
| | | | | | | | | | | |
Collapse
|