1
|
de Souza W. Contribution of microscopy to a better understanding of the anatomy of pathogenic protists. Proc Natl Acad Sci U S A 2024; 121:e2321515121. [PMID: 38621128 PMCID: PMC11046605 DOI: 10.1073/pnas.2321515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 04/17/2024] Open
Abstract
In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem—Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
- Centro Multiusuário para Análise de Fenômenos Biomédicos, Universidade do Estado do Amazonas, Amazonas69065-001, Brazil
| |
Collapse
|
2
|
Pardo-Rodriguez D, Lasso P, Santamaría-Torres M, Cala MP, Puerta CJ, Méndez Arteaga JJ, Robles J, Cuervo C. Clethra fimbriata hexanic extract triggers alteration in the energy metabolism in epimastigotes of Trypanosoma cruzi. Front Mol Biosci 2023; 10:1206074. [PMID: 37818099 PMCID: PMC10561390 DOI: 10.3389/fmolb.2023.1206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima, Colombia
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J. Puerta
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Jorge Robles
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
3
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
4
|
Lopinavir and Nelfinavir Induce the Accumulation of Crystalloid Lipid Inclusions within the Reservosomes of Trypanosoma cruzi and Inhibit Both Aspartyl-Type Peptidase and Cruzipain Activities Detected in These Crucial Organelles. Trop Med Infect Dis 2021; 6:tropicalmed6030120. [PMID: 34287373 PMCID: PMC8293474 DOI: 10.3390/tropicalmed6030120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Several research groups have explored the repositioning of human immunodeficiency virus aspartyl peptidase inhibitors (HIV-PIs) on opportunistic infections caused by bacteria, fungi and protozoa. In Trypanosoma cruzi, HIV-PIs have a high impact on parasite viability, and one of the main alterations promoted by this treatment is the imbalance in the parasite’s lipid metabolism. However, the reasons behind this phenomenon are unknown. In the present work, we observed by transmission electron microscopy (TEM) that the treatment of T. cruzi epimastigotes with the HIV-PIs lopinavir and nelfinavir induced a huge accumulation of crystalloid-shaped lipids within the reservosomes, most of them deforming these key organelles. As previously reported, those structures are characteristic of lipid inclusions formed mostly of cholesterol and cholesterol-esters. The fractionation of nontreated epimastigotes generated two distinct fractions enriched in reservosomes: one mostly composed of lipid inclusion-containing reservosomes (Fraction B1) and one where lipid inclusions were much less abundant (Fraction B2). Interestingly, the extract of Fraction B2 presented enzymatic activity related to aspartyl-type peptidases 3.5 times higher than that found in the extract obtained from Fraction B1. The cleavage of cathepsin D substrate by this class of peptidases was strongly impaired by pepstatin A, a prototypical aspartyl PI, and the HIV-PIs lopinavir and nelfinavir. In addition, both HIV-PIs also inhibited (to a lesser extent) the cruzipain activity present in reservosomes. Finally, our work provides new evidence concerning the presence and supposed participation of aspartyl peptidases in T. cruzi, even as it adds new information about the mechanisms behind the alterations promoted by lopinavir and nelfinavir in the protozoan.
Collapse
|
5
|
Losinno AD, Martínez SJ, Labriola CA, Carrillo C, Romano PS. Induction of autophagy increases the proteolytic activity of reservosomes during Trypanosoma cruzi metacyclogenesis. Autophagy 2021; 17:439-456. [PMID: 31983275 PMCID: PMC8007142 DOI: 10.1080/15548627.2020.1720428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.
Collapse
Affiliation(s)
- Antonella Denise Losinno
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
| | - Santiago José Martínez
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Laboratorio de Parasitología molecular y bioquímica, Instituto de Ciencias y Tecnología Dr. César Milstein (ICT—CONICET), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
| |
Collapse
|
6
|
An evaluation of lipid metabolism in the insect trypanosomatid Herpetomonas muscarum uncovers a pathway for the uptake of extracellular insect lipoproteins. Parasitol Int 2018; 67:97-106. [DOI: 10.1016/j.parint.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/28/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
|
7
|
Cooper C, Clode PL, Peacock C, Thompson RCA. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia. ADVANCES IN PARASITOLOGY 2016; 97:47-109. [PMID: 28325373 DOI: 10.1016/bs.apar.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosomes constitute a group of flagellate protozoan parasites responsible for a number of important, yet neglected, diseases in both humans and livestock. The most significantly studied include the causative agents of African sleeping sickness (Trypanosoma brucei) and Chagas disease (Trypanosoma cruzi) in humans. Much of our knowledge about trypanosome host-parasite relationships and life histories has come from these two human pathogens. Recent investigations into the diversity and life histories of wildlife trypanosomes in Australia highlight that there exists a great degree of biological and behavioural variation within and between trypanosomes. In addition, the genetic relationships between some Australian trypanosomes show that they are unexpectedly more closely related to species outside Australia than within it. These findings have led to a growing focus on the importance of understanding parasites occurring naturally in wildlife to (1) better document parasite biodiversity, (2) determine evolutionary relationships and degree of host specificity, (3) understand host-parasite interactions and the role of parasites in the natural ecosystem and (4) identify biosecurity issues of emerging disease in both wildlife and human populations. Here we review what is known about the diversity, life histories, host-parasite interactions and evolutionary relationships of trypanosomes in Australian wildlife. In this context, we focus upon the genetic proximity of key Australian species to the pathogenic T. cruzi and discuss similarities in their biology and behaviour that present a potential risk of human disease transmission by Australian vectors and wildlife.
Collapse
Affiliation(s)
- C Cooper
- The University of Western Australia, Crawley, WA, Australia
| | - P L Clode
- The University of Western Australia, Crawley, WA, Australia
| | - C Peacock
- The University of Western Australia, Crawley, WA, Australia; Telethon Kids Institute, Subiaco, WA, Australia
| | | |
Collapse
|
8
|
Lipophorin Drives Lipid Incorporation and Metabolism in Insect Trypanosomatids. Protist 2015; 166:297-309. [DOI: 10.1016/j.protis.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 01/04/2023]
|
9
|
Suhett GD, de Souza SAL, Carvalho AB, de Pinho Rachid R, da Cunha-E-Silva NL, de Carvalho ACC, da Fonseca LMB, dos Santos Goldenberg RC, Gutfilen B. 99m-Technetium binding site in bone marrow mononuclear cells. Stem Cell Res Ther 2015; 6:115. [PMID: 26041023 PMCID: PMC4473842 DOI: 10.1186/s13287-015-0107-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 05/28/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION The increasing interest in 99m-technetium ((99m)Tc)-labeled stem cells encouraged us to study the (99m)Tc binding sites in stem cell compartments. METHODS Bone marrow mononuclear cells were collected from femurs and tibia of rats. Cells were labeled with (99m)Tc by a direct method, in which reduced molecules react with (99m)Tc with the use of chelating agents, and lysed carefully in an ultrasonic apparatus. The organelles were separated by means of differential centrifugation. At the end of this procedure, supernatants and pellets were counted, and the percentages of radioactivity (in megabecquerels) bound to the different cellular fractions were determined. Percentages were calculated by dividing the radioactivity in each fraction by total radioactivity in the sample. The pellets were separated and characterized by their morphology on electron microscopy. RESULTS The labeling procedure did not affect viability of bone marrow mononuclear cells. Radioactivity distributions in bone marrow mononuclear cell organelles, obtained in five independent experiments, were approximately 38.5 % in the nuclei-rich fraction, 5.3 % in the mitochondria-rich fraction, 2.2 % in microsomes, and 54 % in the cytosol. Our results showed that most of the radioactivity remained in the cytosol; therefore, this is an intracellular labeling procedure that has ribosomes unbound to membrane and soluble molecules as targets. However, approximately 39 % of the radioactivity remained bound to the nuclei-rich fraction. To confirm that cell disruption and organelle separation were efficient, transmission electron microscopy assays of all pellets were performed. CONCLUSIONS Our results showed that most of the radioactivity was present in the cytosol fraction. More studies to elucidate the mechanisms involved in the cellular uptake of (99m)Tc in bone marrow cells are ongoing.
Collapse
Affiliation(s)
- Grazielle Dias Suhett
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Sergio Augusto Lopes de Souza
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 255. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-913, Brasil.
| | - Adriana Bastos Carvalho
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Rachel de Pinho Rachid
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Narcisa Leal da Cunha-E-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Antonio Carlos Campos de Carvalho
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Lea Mirian Barbosa da Fonseca
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 255. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-913, Brasil.
| | - Regina Coeli dos Santos Goldenberg
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Bloco G. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-902, Brasil.
| | - Bianca Gutfilen
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco, 255. Ilha do Fundão, Cidade Universitária, Rio de Janeiro, 21941-913, Brasil.
| |
Collapse
|
10
|
Ferrão PM, d'Avila-Levy CM, Araujo-Jorge TC, Degrave WM, Gonçalves ADS, Garzoni LR, Lima AP, Feige JJ, Bailly S, Mendonça-Lima L, Waghabi MC. Cruzipain Activates Latent TGF-β from Host Cells during T. cruzi Invasion. PLoS One 2015; 10:e0124832. [PMID: 25938232 PMCID: PMC4418758 DOI: 10.1371/journal.pone.0124832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 11/28/2022] Open
Abstract
Several studies indicate that the activity of cruzipain, the main lysosomal cysteine peptidase of Trypanosoma cruzi, contributes to parasite infectivity. In addition, the parasitic invasion process of mammalian host cells is described to be dependent on the activation of the host TGF-β signaling pathway by T. cruzi. Here, we tested the hypothesis that cruzipain could be an important activator of latent TGF-β and thereby trigger TGF-β-mediated events crucial for the development of Chagas disease. We found that live epimastigotes of T. cruzi, parasite lysates and purified cruzipain were able to activate latent TGF-β in vitro. This activation could be inhibited by the cysteine peptidase inhibitor Z-Phe-Ala-FMK. Moreover, transfected parasites overexpressing chagasin, a potent endogenous cruzipain inhibitor, prevented latent TGF-β activation. We also observed that T. cruzi invasion, as well as parasite intracellular growth, were inhibited by the administration of Z-Phe-Ala-FMK or anti-TGF-β neutralizing antibody to Vero cell cultures. We further demonstrated that addition of purified cruzipain enhanced the invasive activity of trypomastigotes and that this effect could be completely inhibited by addition of a neutralizing anti-TGF-β antibody. Taken together, these results demonstrate that the activities of cruzipain and TGF-β in the process of cell invasion are functionally linked. Our data suggest that cruzipain inhibition is an interesting chemotherapeutic approach for Chagas disease not only because of its trypanocidal activity, but also due to the inhibitory effect on TGF-β activation.
Collapse
Affiliation(s)
- Patrícia Mello Ferrão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tania Cremonini Araujo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Antônio da Silva Gonçalves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Lima
- Laboratório de Bioquímica e Biologia Molecular de Peptidases, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Jean Jacques Feige
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Sabine Bailly
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
11
|
Alves LR, Guerra-Slompo EP, de Oliveira AV, Malgarin JS, Goldenberg S, Dallagiovanna B. mRNA localization mechanisms in Trypanosoma cruzi. PLoS One 2013; 8:e81375. [PMID: 24324687 PMCID: PMC3852752 DOI: 10.1371/journal.pone.0081375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/13/2013] [Indexed: 01/06/2023] Open
Abstract
Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.
Collapse
Affiliation(s)
- Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Eloise P. Guerra-Slompo
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Arthur V. de Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Juliane S. Malgarin
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Samuel Goldenberg
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
| | - Bruno Dallagiovanna
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz-Paraná. Curitiba, Paraná, Brasil
- * E-mail:
| |
Collapse
|
12
|
Abstract
The decoding of the Tritryp reference genomes nearly 7 years ago provided a first peek into the biology of pathogenic trypanosomatids and a blueprint that has paved the way for genome-wide studies. Although 60-70% of the predicted protein coding genes in Trypanosoma brucei, Trypanosoma cruzi and Leishmania major remain unannotated, the functional genomics landscape is rapidly changing. Facilitated by the advent of next-generation sequencing technologies, improved structural and functional annotation and genes and their products are emerging. Information is also growing for the interactions between cellular components as transcriptomes, regulatory networks and metabolomes are characterized, ushering in a new era of systems biology. Simultaneously, the launch of comparative sequencing of multiple strains of kinetoplastids will finally lead to the investigation of a vast, yet to be explored, evolutionary and pathogenomic space.
Collapse
Affiliation(s)
- J Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
13
|
Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS One 2011; 6:e22359. [PMID: 21818313 PMCID: PMC3144899 DOI: 10.1371/journal.pone.0022359] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 06/26/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells. METHODOLOGY/PRINCIPAL FINDINGS Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones. CONCLUSIONS/SIGNIFICANCE Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation.
Collapse
|
14
|
Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G. Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 2010; 3:116. [PMID: 21126352 PMCID: PMC3003647 DOI: 10.1186/1756-3305-3-116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review how distinct cell death pathways in Trypanosoma, Leishmania, Plasmodium or Toxoplasma may contribute to regulation of parasite cell densities in vectors and mammalian hosts, to differentiation of parasites, to stress responses, and to modulation of the host immunity. The examples provided indicate crucial roles of PCD in parasite biology. The existence of PCD pathways in these organisms and the identification as being critical for parasite biology and parasite-host interactions could serve as a basis for developing new anti-parasitic drugs that take advantage of these pathways.
Collapse
Affiliation(s)
- Carsten Gk Lüder
- Institute for Medical Microbiology, Georg-August-University, Kreuzbergring 57, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
15
|
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics 2010; 73:845-67. [PMID: 20056176 DOI: 10.1016/j.jprot.2009.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 12/18/2009] [Indexed: 12/31/2022]
Abstract
Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are protozoan parasites that cause a spectrum of fatal human diseases around the world. Recent completion of the genomic sequencing of these parasites has enormous relevance to the study of their biology and the pathogenesis of the diseases they cause because it opens the door to high-throughput proteomic technologies. This review encompasses studies using diverse proteomic approaches with these organisms to describe and catalogue global protein profiles, reveal changes in protein expression during development, elucidate the subcellular localisation of gene products, and evaluate host-parasite interactions.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
16
|
Penha LL, Sant'Anna CB, Mendonça-Previato L, Cunha-e-Silva NL, Previato JO, Lima APCA. Sorting of phosphoglucomutase to glycosomes in Trypanosoma cruzi is mediated by an internal domain. Glycobiology 2009; 19:1462-72. [PMID: 19696235 DOI: 10.1093/glycob/cwp121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma cruzi relies on highly galactosylated molecules as virulence factors and the enzymes involved in sugar biosynthesis are potential therapeutic targets. The synthesis of UDP-galactose in T. cruzi requires the activity of phosphoglucomutase (PGM), the enzyme that catalyzes the interconversion of glucose-6-phosphate and glucose-1-phosphate. Several enzymes that participate in carbohydrate metabolism in trypanosomes are confined to specialized peroxisome-like organelles called glycosomes. The majority of glycosomal proteins contain peroxisome-targeting signals (PTS) at the COOH- or at the amino-terminus, which drive their transport to glycosomes. We had previously identified the T. cruzi PGM gene (TcPGM) and demonstrated that it encodes a functional enzyme. Here, we show that, in contrast to yeast and mammalian cells, TcPGM resides in glycosomes of the parasite. However, no classical PTS1 or PTS2 motif is present in its sequence. We investigated glycosomal targeting by generating T. cruzi cell lines expressing different domains of TcPGM fused to the green fluorescent protein (GFP). The analysis of the subcellular localization of fusion proteins revealed that an internal targeting signal of TcPGM, residing between amino acid residues 260 and 380, is capable of targeting GFP to glycosomes. These results demonstrate that, in T. cruzi, PGM import into glycosomes is mediated by a novel non-PTS domain that is located internally in the protein.
Collapse
Affiliation(s)
- Luciana L Penha
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Bloco G, Universidade Federal do Rio de Janeiro, 21 944 970, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Sant'Anna C, Nakayasu ES, Pereira MG, Lourenço D, de Souza W, Almeida IC, Cunha-E-Silva NL. Subcellular proteomics of Trypanosoma cruzi reservosomes. Proteomics 2009; 9:1782-94. [PMID: 19288526 DOI: 10.1002/pmic.200800730] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reservosomes are the endpoint of the endocytic pathway in Trypanosoma cruzi epimastigotes. These organelles have the particular ability to concentrate proteins and lipids obtained from medium together with the main proteolytic enzymes originated from the secretory pathway, being at the same time a storage organelle and the main site of protein degradation. Subcellular proteomics have been extensively used for profiling organelles in different cell types. Here, we combine cell fractionation and LC-MS/MS analysis to identify reservosome-resident proteins. Starting from a purified reservosome fraction, we established a protocol to isolate reservosome membranes. Transmission electron microscopy was applied to confirm the purity of the fractions. To achieve a better coverage of identified proteins we analyzed the fractions separately and combined the results. LC-MS/MS analysis identified in total 709 T. cruzi-specific proteins; of these, 456 had predicted function and 253 were classified as hypothetical proteins. We could confirm the presence of most of the proteins validated by previous work and identify new proteins from different classes such as enzymes, proton pumps, transport proteins, and others. The definition of the reservosome protein profile is a good tool to assess their molecular signature, identify molecular markers, and understand their relationship with different organelles.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
19
|
Different cell death pathways induced by drugs in Trypanosoma cruzi: An ultrastructural study. Micron 2009; 40:157-68. [DOI: 10.1016/j.micron.2008.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 11/23/2022]
|
20
|
Sant'Anna C, Pereira MG, Lemgruber L, de Souza W, Cunha e Silva NL. New insights into the morphology of Trypanosoma cruzi reservosome. Microsc Res Tech 2008; 71:599-605. [PMID: 18452191 DOI: 10.1002/jemt.20592] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reservosomes are late endosomes present only in members of the Schizotrypanum subgenus of the Trypanosoma genus and are defined as the site of storage of endocytosed macromolecules and lysosomal enzymes. They have been extensively described in Trypanosoma cruzi epimastigote: are bounded by a membrane unit, present an electron-dense protein matrix with electron-lucent lipid inclusions, being devoid of inner membranes. Here we performed a detailed ultrastructural analysis of these organelles using a variety of electron microscopy techniques, including ultrathin sectioning, uranyl acetate stained preparations, and freeze fracture, either in intact epimastigotes or in isolated reservosomes. New informations were obtained. First, both isolated and in situ reservosomes presented small profiles of inner membranes that are morphologically similar to the membrane surrounding the organelle. In uranyl acetate stained preparations, internal membrane profiles turned out to be longer than they appeared in ultrathin section images and traversed the organelle diameter. Internal vesicles were also found. Second, endocytosed cargo are not associated with internal vesicles and reach reservosomes on board of vesicles that fuse with the boundary membrane, delivering cargo directly into reservosome lumen. Third, electron-lucent bodies with saturated lipid core surrounded by a membrane monolayer and with unusual rectangular shape were also observed. Fourth, it was possible to demonstrate the presence of intramembranous particles on the E face of both internal vesicles and the surrounding membrane. Collectively, these results indicate that reservosomes have a complex internal structure, which may correlate with their multiple functions.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brasil
| | | | | | | | | |
Collapse
|
21
|
All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 2008; 130:1187-98. [PMID: 18696100 DOI: 10.1007/s00418-008-0486-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2008] [Indexed: 01/07/2023]
Abstract
Trypanosoma cruzi epimastigote forms concentrate their major protease, cruzipain, in the same compartment where these parasites store macromolecules obtained from medium and for this ability these organelles were named as reservosomes. Intracellular digestion occurs mainly inside reservosomes and seems to be modulated by cruzipain and its natural inhibitor chagasin that also concentrates in reservosomes. T. cruzi mammalian forms, trypomastigotes and amastigotes, are unable to capture macromolecules by endocytosis, but also express cruzipain and chagasin, whose role in infectivity has been described. In this paper, we demonstrate that trypomastigotes and amastigotes also concentrate cruzipain, chagasin as well as serine carboxypeptidase in hydrolase-rich compartments of acidic nature. The presence of P-type proton ATPase indicates that this compartment is acidified by the same enzyme as epimastigote endocytic compartments. Electron microscopy analyzes showed that these organelles are placed at the posterior region of the parasite body, are single membrane bound and possess an electron-dense matrix with electronlucent inclusions. Three-dimensional reconstruction showed that these compartments have different size and shape in trypomastigotes and amastigotes. Based on these evidences, we suggest that all T. cruzi developmental stages present lysosome-related organelles that in epimastigotes have the additional and unique ability of storing cargo.
Collapse
|
22
|
da Silva-Lopez RE, Morgado-Díaz JA, dos Santos PT, Giovanni-De-Simone S. Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 2008; 107:159-67. [PMID: 18599007 DOI: 10.1016/j.actatropica.2008.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/17/2022]
Abstract
An extracellular serine peptidase was purified 460-fold from Trypanosoma cruzi epimastigotes culture supernatant with (NH(4))(2)SO(4) precipitation followed by affinity chromatography aprotinin-agarose and continuous elution electrophoresis, yielding a total recovery of 65%. The molecular mass of the active enzyme estimated by reducing and non-reducing SDS-PAGE was about 75kDa. The optimal pH and temperature of this glycosylated peptidase were 8.0 and 37 degrees C using alpha-N-rho-tosyl-L-arginine-methyl ester (L-TAME) as substrate. The enzyme did not hydrolyze polypeptide substrates but was active against short peptide substrates containing arginine at the P1 site, in both ester and amide bonds. The peptidase was inhibited by TPCK and TCLK but not by other protease inhibitors suggesting that the enzyme belongs to the serine peptidase class. Interestingly, the enzyme seems to demonstrate some metal dependence since its activity was reduced by 1,10-phenanthroline, calcium and zinc ions. Rabbit anti-T. cruzi extracellular serine peptidase antiserum was used to show that the enzyme was restricted to intracellular structures, including the flagellar pocket, plasma membrane and cytoplasmic vesicles resembling reservosomes. These results suggest that the serine oligopeptidase is secreted into the extracellular environment through the flagellar pocket and the intracellular location could suggest its participation in certain proteolysis events in reservosomes. These findings show that this peptidase is a novel T. cruzi serine oligopeptidase, which differs not only from other peptidases described in the same parasite but also in other species of Trypanosoma.
Collapse
|
23
|
de Souza W, Morgado-Diaz JA, Cunha-e-Silva NL. Cell fractionation of parasitic protozoa. Methods Mol Biol 2008; 425:313-31. [PMID: 18369906 DOI: 10.1007/978-1-60327-210-0_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell fractionation, a methodological strategy for obtaining purified organelle preparations, has been applied successfully to parasitic protozoa by a number of researchers. These studies have provided new information of the cell biology of these parasites and have supported investigators to assume that some of the protozoa form the roots of the evolutionary tree of eukaryotic cells. The cell fractionation usually starts with disruption of the plasma membrane, using conditions that minimize damage to the membranes bounding intracellular organelles. An important requirement for successful cell fractionation is the evaluation of the isolation procedure that can be made by morphological and biochemical methods. The morphological approaches use light and electron microscopy of thin section of different fractions obtained, and the biochemical methods are based on the quantification of marker enzymes or other molecules (for instance, a special type of lipid, an antigen, etc.). Here we will present our experience in the isolation and characterization of some structures found in trypanosomatids and trichomonads.
Collapse
|
24
|
Salto ML, Kuhlenschmidt T, Kuhlenschmidt M, de Lederkremer RM, Docampo R. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi. Mol Biochem Parasitol 2007; 158:120-30. [PMID: 18207579 DOI: 10.1016/j.molbiopara.2007.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 11/28/2007] [Accepted: 12/01/2007] [Indexed: 10/22/2022]
Abstract
Highly purified acidocalcisomes from Trypanosoma cruzi epimastigotes were obtained by differential centrifugation and iodixanol gradient ultracentrifugation. Lipid analysis of acidocalcisomes revealed the presence of low amounts of 3beta-hydroxysterols and predominance of phospholipids. Alkylacyl phosphatidylinositol (16:0/18:2), diacyl phosphatidylinositol (18:0/18:2), diacyl phosphatidylcholine (16:0/18:2; 16:1/18:2; 16:2/18:2; 18:1/18:2 and 18:2/18:2), and diacyl phosphatidylethanolamine (16:0/18:2 and 16:1/18:2) were the only phospholipids characterized by electrospray ionization-mass spectrometry (ESI-MS). Incubation of epimastigotes with [(3)H]-mannose and isolation of acidocalcisomes allowed the detection of a glycoinositolphospholipid (GIPL) in these organelles. The sugar content of the acidocalcisomal GIPL was similar to that of the GIPL present in a microsomal fraction but the amount of galactofuranose and inositol with respect to the other monosaccharides was lower, suggesting a different chemical structure. Taken together, these results indicate that acidocalcisomes of T. cruzi have a distinct lipid and carbohydrate composition.
Collapse
Affiliation(s)
- María Laura Salto
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | | | | | | | | |
Collapse
|
25
|
Cunha-e-Silva N, Sant'Anna C, Pereira MG, Porto-Carreiro I, Jeovanio AL, de Souza W. Reservosomes: multipurpose organelles? Parasitol Res 2006; 99:325-7. [PMID: 16794853 DOI: 10.1007/s00436-006-0190-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/09/2006] [Indexed: 12/31/2022]
Abstract
Reservosomes are endocytic organelles from Trypanosoma cruzi epimastigotes that store proteins and lipids for future use. The lack of molecular markers for the compartments of this parasite makes it difficult to clarify all reservosome functions, as they present characteristics of pre-lysosomes, lysosomes and recycling compartments.
Collapse
Affiliation(s)
- Narcisa Cunha-e-Silva
- Instituto de Biofisica Carlos Chagas Filho, CCS, Bloco G, subsolo, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro, RJ, CEP 21949-900, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Vieira M, Rohloff P, Luo S, Cunha-E-Silva N, De Souza W, Docampo R. Role for a P-type H+-ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 2006; 392:467-74. [PMID: 16149915 PMCID: PMC1316285 DOI: 10.1042/bj20051319] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies in Trypanosoma cruzi, the etiologic agent of Chagas disease, have resulted in the cloning and sequencing of a pair of tandemly linked genes (TcHA1 and TcHA2) that encode P (phospho-intermediate form)-type H+-ATPases with homology to fungal and plant proton-pumping ATPases. In the present study, we demonstrate that these pumps are present in the plasma membrane and intracellular compartments of three different stages of T. cruzi. The main intracellular compartment containing these ATPases in epimastigotes was identified as the reservosome. This identification was achieved by immunofluorescence assays and immunoelectron microscopy showing their co-localization with cruzipain, and by subcellular fractionation and detection of their activity. ATP-dependent proton transport by isolated reservosomes was sensitive to vanadate and insensitive to bafilomycin A1, which is in agreement with the localization of P-type H+-ATPases in these organelles. Analysis by confocal immunofluorescence microscopy revealed that epitope-tagged TcHA1-Ty1 and TcHA2-Ty1 gene products are localized in the reservosomes, whereas the TcHA1-Ty1 gene product is additionally present in the plasma membrane. Immunogold electron microscopy showed the presence of the H+-ATPases in other compartments of the endocytic pathway such as the cytostome and endosomal vesicles, suggesting that in contrast with most cells investigated until now, the endocytic pathway of T. cruzi is acidified by a P-type H+-ATPase.
Collapse
Affiliation(s)
- Mauricio Vieira
- *Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana–Champaign, Urbana, IL 61802, U.S.A
| | - Peter Rohloff
- *Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana–Champaign, Urbana, IL 61802, U.S.A
| | - Shuhong Luo
- *Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana–Champaign, Urbana, IL 61802, U.S.A
| | - Narcisa L. Cunha-E-Silva
- †Instituto de Biofisica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941 RJ, Brazil
| | - Wanderley De Souza
- †Instituto de Biofisica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941 RJ, Brazil
| | - Roberto Docampo
- *Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana–Champaign, Urbana, IL 61802, U.S.A
- ‡Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, 30602 Athens, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Cuevas IC, Rohloff P, Sánchez DO, Docampo R. Characterization of farnesylated protein tyrosine phosphatase TcPRL-1 from Trypanosoma cruzi. EUKARYOTIC CELL 2005; 4:1550-61. [PMID: 16151248 PMCID: PMC1214199 DOI: 10.1128/ec.4.9.1550-1561.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein tyrosine kinases and phosphatases play important roles in the regulation of cell growth, development, and differentiation. We report here the identification in Trypanosoma cruzi of a gene (TcPRL-1) encoding a protein tyrosine phosphatase. The predicted protein (TcPRL-1) shares ca. 35% identity with the mammalian protein tyrosine phosphatase known as phosphatase of regenerating liver 1 (PRL-1). Four copies of this protein tyrosine phosphatase are present in the T. cruzi genome, and Northern blot assays showed a transcript of approximately 750 bases. TcPRL-1 was detected by Western blot analysis only in amastigote extracts as a 21-kDa protein. TcPRL-1 was expressed in Escherichia coli, and its phosphatase activity was determined by using p-nitrophenylphosphate and a phosphorylated protein as substrates. In contrast to other PRLs, TcPRL-1 activity was not affected by pentamidine, and it was inhibited by very low concentrations of o-vanadate. TcPRL-1 has a C-terminal CAAX motif (CAVM) and is farnesylated in vitro by T. cruzi epimastigote extracts and in vivo according to the transfection results. After transfection of T. cruzi with a vector that expresses TcPRL-1 as a C-terminal fusion to green fluorescent protein, GFP-TcPRL-1 was detected in the endocytic pathway of epimastigotes, amastigotes, and trypomastigotes by colocalization with cruzipain and concanavalin A. Interestingly, a mutant form without the CAAX motif localized to the cytoplasm, in contrast to its mammalian counterparts that localize to the nucleus. The results of these studies on TcPRL-1 reveal that, even though the animal and parasite PRLs share similar kinetic properties, their susceptibilities to inhibitors, as well as their localization, are distinct, implying that they may be involved in different cellular processes.
Collapse
Affiliation(s)
- Ileana C Cuevas
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, Avenida General Paz y Albarellos, San Martín, Provincia de Buenos Aires 1650, Argentina
| | | | | | | |
Collapse
|
28
|
Ramos FP, Araripe JR, Urményi TP, Silva R, Cunha e Silva NL, Leite Fontes CF, da Silveira JF, Rondinelli E. Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity. Biochem Biophys Res Commun 2005; 333:808-17. [PMID: 15975556 DOI: 10.1016/j.bbrc.2005.05.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/25/2022]
Abstract
RAB proteins, which belong to the RAS superfamily, regulate exocytic and endocytic pathways of eukaryotic cells, controlling vesicle docking and fusion. Few RAB proteins have been identified in parasites. Molecular markers for cellular compartments are important to studies concerning about the protein traffic in Trypanosoma cruzi, the causal agent of Chagas disease. In this work, we describe the characterization of TcRABL4, the first RAB-like gene identified in T. cruzi (GenBank Accession No.: ), present as a single-copy gene. TcRABL4 contains all five consensus RAB motifs but lacks cysteine residues at the C terminus, which are essential to isoprenylation, an absolute prerequisite for membrane association of these proteins. TcRABL4 is a functional GTPase that is able to bind and hydrolyze GTP, and its gene is transcribed as a single 1.2 kb mRNA in epimastigotes. TcRABL4 appears to be differentially regulated in the three cell forms of the parasite, and the protein is not associated to membranes, unlike other RAB proteins. It is possible that TcRABL4 may be a member of a novel family of small GTPases.
Collapse
Affiliation(s)
- Fabiane Pereira Ramos
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Olson KJ, Ahmadzadeh H, Arriaga EA. Within the cell: analytical techniques for subcellular analysis. Anal Bioanal Chem 2005; 382:906-17. [PMID: 15928950 DOI: 10.1007/s00216-005-3135-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/28/2005] [Accepted: 01/31/2005] [Indexed: 01/26/2023]
Abstract
This review covers recent developments in the preparation, manipulation, and analyses of subcellular environments. In particular, it highlights approaches for (1) separation and detection of individual organelles, (2) preparation of ultra-pure organelle fractions, and (3) utilization of novel labeling strategies. These approaches, based on innovative technologies such as microfluidics, immunoisolation, mass spectrometry and electrophoresis, suggest that subcellular analyses will soon become as commonplace as single cell and bulk cellular assays.
Collapse
Affiliation(s)
- Karen J Olson
- Department of Biomedical Engineering, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
30
|
Santa-Rita RM, Lira R, Barbosa HS, Urbina JA, de Castro SL. Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. J Antimicrob Chemother 2005; 55:780-4. [PMID: 15790672 DOI: 10.1093/jac/dki087] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Investigation of the antiproliferative synergy of the lysophospholipid analogues (LPAs) edelfosine, ilmofosine and miltefosine with the ergosterol biosynthesis inhibitor ketoconazole against Trypanosoma cruzi. METHODS The effect of LPAs, ketoconazole and their combination was evaluated against epimastigotes and intracellular amastigotes by the parameter IC50 leading to construction of isobolograms, for determination of a synergic effect. For epimastigotes, ultrastructural damage induced by these treatments was evaluated by transmission and scanning electron microscopy. RESULTS Synergy was confirmed against both epimastigotes and amastigotes of the parasite. Edelfosine or ketoconazole alone induced morphological alterations in the plasma membrane and reservosomes of the parasites, while in combination, they also led to severe mitochondrial damage, formation of autophagic structures and multinucleation. Scanning electron microscopy confirmed the effect at the plasma membrane and also revealed alterations in the shape of the parasites. CONCLUSIONS Our results describe the synergic anti-proliferative effect of LPAs and ketoconazole against epimastigotes and intracellular amastigotes and suggest that in epimastigotes, plasma membrane, reservosomes and mitochondria are targets of these drugs, possibly by interference with lipid metabolism.
Collapse
Affiliation(s)
- Ricardo M Santa-Rita
- Departmento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, CP 926, 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
31
|
Sant'Anna C, de Souza W, Cunha-e-Silva N. Biogenesis of the reservosomes of Trypanosoma cruzi. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2004; 10:637-646. [PMID: 15525436 DOI: 10.1017/s1431927604040863] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Indexed: 05/24/2023]
Abstract
Reservosomes are endocytic compartments found in the posterior region of epimastigotes of Trypanosoma cruzi. In the differentiation from trypomastigotes to epimastigotes (reverse metacyclogenesis in vitro), one has the rare opportunity of following the biogenesis of an endocytic compartment. Metacyclic trypomastigotes incubated in LIT medium highly enriched with fetal calf serum differentiated directly to epimastigotes. In recently differentiated epimastigotes, acidic organelles were found in round compartments spread along the cell body, whereas in control epimastigotes they were found in reservosomes located in the posterior region. Ultrastructural analysis of intermediate forms showed that the cytostome and reservosomes appeared before differentiation to epimastigotes was completed. Many polymorphic reservosomes, with or without lipid inclusions, were observed from the anterior portion of the cell body, in close relationship with the Golgi complex, to the posterior region. Endocytic tracers were observed in the cytostome, flagellar pocket, vesicles, and newly formed reservosomes. Cruzipain, the main protease of T. cruzi, was localized in newly formed reservosomes and in vesicles budding from the trans-Golgi network that seem to fuse with reservosomes. Ingested gold-labeled albumin and cruzipain colocalized in recently formed reservosomes. Endocytosis and immunocytochemical analysis suggested that the endocytic and the secretory pathways may contribute to reservosome formation.
Collapse
Affiliation(s)
- Celso Sant'Anna
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janiero, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
32
|
Abstract
Cell fractionation, a methodological strategy for obtaining purified organelle preparations, has been applied successfully to parasitic protozoa by a number of investigators. Here we present and discuss the work of several groups that have obtained highly purified subcellular fractions from trypanosomatids, Apicomplexa and trichomonads, and whose work have added substantially to our knowledge of the cell biology of these parasites.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-900, Brasil.
| | | |
Collapse
|