1
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
2
|
Lukša J, Celitan E, Servienė E, Serva S. Association of ScV-LA Virus with Host Protein Metabolism Determined by Proteomics Analysis and Cognate RNA Sequencing. Viruses 2022; 14:v14112345. [PMID: 36366443 PMCID: PMC9697790 DOI: 10.3390/v14112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
Saccharomyces yeasts are highly dispersed in the environment and microbiota of higher organisms. The yeast killing phenotype, encoded by the viral system, was discovered to be a significant property for host survival. Minor alterations in transcription patterns underpin the reciprocal relationship between LA and M viruses and their hosts, suggesting the fine-tuning of the transcriptional landscape. To uncover the principal targets of both viruses, we performed proteomics analysis of virus-enriched subsets of host proteins in virus type-specific manner. The essential pathways of protein metabolism-from biosynthesis and folding to degradation-were found substantially enriched in virus-linked subsets. The fractionation of viruses allowed separation of virus-linked host RNAs, investigated by high-content RNA sequencing. Ribosomal RNA was found to be inherently associated with LA-lus virus, along with other RNAs essential for ribosome biogenesis. This study provides a unique portrayal of yeast virions through the characterization of the associated proteome and cognate RNAs, and offers a background for understanding ScV-LA viral infection persistency.
Collapse
Affiliation(s)
- Juliana Lukša
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Laboratory of Genetics, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Enrika Celitan
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, LT-08412 Vilnius, Lithuania
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
3
|
Adaptive Response of Saccharomyces Hosts to Totiviridae L-A dsRNA Viruses Is Achieved through Intrinsically Balanced Action of Targeted Transcription Factors. J Fungi (Basel) 2022; 8:jof8040381. [PMID: 35448612 PMCID: PMC9028071 DOI: 10.3390/jof8040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Totiviridae L-A virus is a widespread yeast dsRNA virus. The persistence of the L-A virus alone appears to be symptomless, but the concomitant presence of a satellite M virus provides a killer trait for the host cell. The presence of L-A dsRNA is common in laboratory, industrial, and wild yeasts, but little is known about the impact of the L-A virus on the host’s gene expression. In this work, based on high-throughput RNA sequencing data analysis, the impact of the L-A virus on whole-genome expression in three different Saccharomyces paradoxus and S. cerevisiae host strains was analyzed. In the presence of the L-A virus, moderate alterations in gene expression were detected, with the least impact on respiration-deficient cells. Remarkably, the transcriptional adaptation of essential genes was limited to genes involved in ribosome biogenesis. Transcriptional responses to L-A maintenance were, nevertheless, similar to those induced upon stress or nutrient availability. Based on these data, we further dissected yeast transcriptional regulators that, in turn, modulate the cellular L-A dsRNA levels. Our findings point to totivirus-driven fine-tuning of the transcriptional landscape in yeasts and uncover signaling pathways employed by dsRNA viruses to establish the stable, yet allegedly profitless, viral infection of fungi.
Collapse
|
4
|
Effects of 5'-3' Exonuclease Xrn1 on Cell Size, Proliferation and Division, and mRNA Levels of Periodic Genes in Cryptococcus neoformans. Genes (Basel) 2020; 11:genes11040430. [PMID: 32316250 PMCID: PMC7230856 DOI: 10.3390/genes11040430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022] Open
Abstract
Cell size affects almost all biosynthetic processes by controlling the size of organelles and disrupting the nutrient uptake process. Yeast cells must reach a critical size to be able to enter a new cell cycle stage. Abnormal changes in cell size are often observed under pathological conditions such as cancer disease. Thus, cell size must be strictly controlled during cell cycle progression. Here, we reported that the highly conserved 5′-3′ exonuclease Xrn1 could regulate the gene expression involved in the cell cycle pathway of Cryptococcus neoformans. Chromosomal deletion of XRN1 caused an increase in cell size, defects in cell growth and altered DNA content at 37 °C. RNA-sequencing results showed that the difference was significantly enriched in genes involved in membrane components, DNA metabolism, integration and recombination, DNA polymerase activity, meiotic cell cycle, nuclear division, organelle fission, microtubule-based process and reproduction. In addition, the proportion of the differentially expressed periodic genes was up to 19.8% when XRN1 was deleted, including cell cycle-related genes, chitin synthase genes and transcription factors, indicating the important role of Xrn1 in the control of cell cycle. This work provides insights into the roles of RNA decay factor Xrn1 in maintaining appropriate cell size, DNA content and cell cycle progression.
Collapse
|
5
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
6
|
Li Q, Yang H, He L, Wang Q. Characterization of the Es -DDX52 involved in the spermatogonial mitosis and spermatid differentiation in Chinese mitten crab ( Eriocheir sinensis ). Gene 2018; 646:106-119. [DOI: 10.1016/j.gene.2017.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
|
7
|
Wollschlaeger C, Trevijano-Contador N, Wang X, Legrand M, Zaragoza O, Heitman J, Janbon G. Distinct and redundant roles of exonucleases in Cryptococcus neoformans: implications for virulence and mating. Fungal Genet Biol 2014; 73:20-8. [PMID: 25267175 DOI: 10.1016/j.fgb.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/26/2023]
Abstract
Opportunistic pathogens like Cryptococcus neoformans are constantly exposed to changing environments, in their natural habitat as well as when encountering a human host. This requires a coordinated program to regulate gene expression that can act at the levels of mRNA synthesis and also mRNA degradation. Here, we find that deletion of the gene encoding the major cytoplasmic 5'→3' exonuclease Xrn1p in C. neoformans has important consequences for virulence associated phenotypes such as growth at 37 °C, capsule and melanin. In an invertebrate model of cryptococcosis the alteration of these virulence properties corresponds to avirulence of the xrn1Δ mutant strains. Additionally, deletion of XRN1 impairs uni- and bisexual mating. On a molecular level, the absence of XRN1 is associated with the upregulation of other major exonuclease encoding genes (i.e. XRN2 and RRP44). Using inducible alleles of RRP44 and XRN2, we show that artificial overexpression of these genes alters LAC1 gene expression and mating. Our data thus suggest the existence of a complex interdependent regulation of exonuclease encoding genes that impact upon virulence and mating in C. neoformans.
Collapse
Affiliation(s)
- Carolin Wollschlaeger
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France.
| |
Collapse
|
8
|
Medina DA, Jordán-Pla A, Millán-Zambrano G, Chávez S, Choder M, Pérez-Ortín JE. Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front Genet 2014; 5:1. [PMID: 24567736 PMCID: PMC3915102 DOI: 10.3389/fgene.2014.00001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
The 5′ to 3′ exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5′ region of a number of genes. In the present work, we show that disruption of Xrn1 activity preferentially affects both the synthesis and decay of a distinct subpopulation of mRNAs. The most affected mRNAs are the transcripts of the highly transcribed genes, mainly those encoding ribosome biogenesis and translation factors. Previously, we proposed that synthegradases play a key role in regulating both mRNA synthesis and degradation. Evidently, Xrn1 functions as a synthegradase, whose selectivity might help coordinating the expression of the protein synthetic machinery. We propose to name the most affected genes “Xrn1 synthegradon.”
Collapse
Affiliation(s)
- Daniel A Medina
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| | - Antonio Jordán-Pla
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| | - Gonzalo Millán-Zambrano
- Departamento de Genética and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Sebastián Chávez
- Departamento de Genética and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Mordechai Choder
- Faculty of Medicine, Department of Molecular Microbiology, Technion-Israel Institute of Technology Haifa, Israel
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| |
Collapse
|
9
|
Nagarajan VK, Jones CI, Newbury SF, Green PJ. XRN 5'→3' exoribonucleases: structure, mechanisms and functions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:590-603. [PMID: 23517755 PMCID: PMC3742305 DOI: 10.1016/j.bbagrm.2013.03.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 01/11/2023]
Abstract
The XRN family of 5'→3' exoribonucleases is critical for ensuring the fidelity of cellular RNA turnover in eukaryotes. Highly conserved across species, the family is typically represented by one cytoplasmic enzyme (XRN1/PACMAN or XRN4) and one or more nuclear enzymes (XRN2/RAT1 and XRN3). Cytoplasmic and/or nuclear XRNs have proven to be essential in all organisms tested, and deficiencies can have severe developmental phenotypes, demonstrating that XRNs are indispensable in fungi, plants and animals. XRNs degrade diverse RNA substrates during general RNA decay and function in specialized processes integral to RNA metabolism, such as nonsense-mediated decay (NMD), gene silencing, rRNA maturation, and transcription termination. Here, we review current knowledge of XRNs, highlighting recent work of high impact and future potential. One example is the breakthrough in our understanding of how XRN1 processively degrades 5' monophosphorylated RNA, revealed by its crystal structure and mutational analysis. The expanding knowledge of XRN substrates and interacting partners is outlined and the functions of XRNs are interpreted at the organismal level using available mutant phenotypes. Finally, three case studies are discussed in more detail to underscore a few of the most exciting areas of research on XRN function: XRN4 involvement in small RNA-associated processes in plants, the roles of XRN1/PACMAN in Drosophila development, and the function of human XRN2 in nuclear transcriptional quality control. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Vinay K. Nagarajan
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Christopher I. Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F. Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Pamela J. Green
- Delaware Biotechnology Institute, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
10
|
Jones CI, Zabolotskaya MV, Newbury SF. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:455-68. [PMID: 22383165 DOI: 10.1002/wrna.1109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
XRN1 is a 5' → 3' processive exoribonuclease that degrades mRNAs after they have been decapped. It is highly conserved in all eukaryotes, including homologs in Drosophila melanogaster (Pacman), Caenorhabditis elegans (XRN1), and Saccharomyces cerevisiae (Xrn1p). As well as being a key enzyme in RNA turnover, XRN1 is involved in nonsense-mediated mRNA decay and degradation of mRNAs after they have been targeted by small interfering RNAs or microRNAs. The crystal structure of XRN1 can explain its processivity and also the selectivity of the enzyme for 5' monophosphorylated RNA. In eukaryotic cells, XRN1 is often found in particles known as processing bodies (P bodies) together with other proteins involved in the 5' → 3' degradation pathway, such as DCP2 and the helicase DHH1 (Me31B). Although XRN1 shows little specificity to particular 5' monophosphorylated RNAs in vitro, mutations in XRN1 in vivo have specific phenotypes suggesting that it specifically degrades a subset of RNAs. In Drosophila, mutations in the gene encoding the XRN1 homolog pacman result in defects in wound healing, epithelial closure and stem cell renewal in testes. We propose a model where specific mRNAs are targeted to XRN1 via specific binding of miRNAs and/or RNA-binding proteins to instability elements within the RNA. These guide the RNA to the 5' core degradation apparatus for controlled degradation.
Collapse
|
11
|
Lee KH, Kim SY, Jung JH, Kim J. Proteomic analysis of hyphae-specific proteins that are expressed differentially in cakem1/cakem1 mutant strains of Candida albicans. J Microbiol 2010; 48:365-71. [PMID: 20571955 DOI: 10.1007/s12275-010-9155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
Abstract
The yeast-to-hyphal transition is a major virulence factor in the fungal pathogen Candida albicans. Mutations in the CaKEM1 gene, which encodes a 5'-3' exoribonuclease responsible for mRNA degradation, show a defect in hyphal growth. We applied two-dimensional gel electrophoresis to identify hyphae-specific proteins that have altered expressions in the presence of the cakem1 mutation. Eight proteins, Eno1, Eps1, Fba1, Imh3, Lpd1, Met6, Pdc11, and Tsa1 were upregulated during hyphal transition in wild-type but not in cakem1/cakem1 mutant cells. A second group of proteins, Idh1, Idh2, and Ssb1, showed increased levels of expression in cakem1/cakem1 mutant cells when compared to wild-type cells. Overexpression of Lpd1, a component of the pyruvate dehydrogenase complex, caused slight hyperfilamentation in a wild-type strain and suppressed the filamentation defect of the cakem1 mutation. The Ssb1 protein, which is a potential heat shock protein, and the Imh3 protein, which is a putative enzyme in GMP biosynthesis also showed the filamentation-associated phenotypes.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Microbiology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Park YU, Hur H, Ka M, Kim J. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. EUKARYOTIC CELL 2006; 5:2120-7. [PMID: 17041186 PMCID: PMC1694813 DOI: 10.1128/ec.00121-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dimorphic transition of yeast to the hyphal form is regulated by the mitogen-activated protein kinase and cyclic AMP-dependent protein kinase A pathways in Saccharomyces cerevisiae. Signaling pathway-responsive transcription factors such as Ste12, Tec1, and Flo8 are known to mediate filamentation-specific transcription. We were interested in investigating the translational regulation of specific mRNAs during the yeast-to-hyphal-form transition. Using polyribosome fractionation and RT-PCR analysis, we identified STE12, GPA2, and CLN1 as translation regulation target genes during filamentous growth. The transcript levels for these genes did not change, but their mRNAs were preferentially associated with polyribosomes during the hyphal transition. The intracellular levels of Ste12, Gpa2, and Cln1 proteins increased under hyphal-growth conditions. The increase in Ste12 protein level was partially blocked by mutations in the CAF20 and DHH1 genes, which encode an eIF4E inhibitor and a decapping activator, respectively. In addition, the caf20 and dhh1 mutations resulted in defects in filamentous growth. The filamentation defects caused by caf20 and dhh1 mutations were suppressed by STE12 overexpression. These results suggest that Caf20 and Dhh1 control yeast filamentation by regulating STE12 translation.
Collapse
Affiliation(s)
- Young-Un Park
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Yuseong-Gu, Gung-Dong 220, Daejeon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
13
|
Richard ML, Nobile CJ, Bruno VM, Mitchell AP. Candida albicans biofilm-defective mutants. EUKARYOTIC CELL 2005; 4:1493-502. [PMID: 16087754 PMCID: PMC1214533 DOI: 10.1128/ec.4.8.1493-1502.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biofilm formation plays a key role in the life cycles and subsistence of many microorganisms. For the human fungal pathogen Candida albicans, biofilm development is arguably a virulence trait, because medical implants that serve as biofilm substrates are significant risk factors for infection. The development of C. albicans biofilms in vitro proceeds through an early phase, in which yeast cells populate a substrate, an intermediate phase, in which pseudohyphal and hyphal cell types are produced, and a maturation phase, in which continued cell growth is accompanied by accumulation of an extracellular matrix. Here we report the results of a screen for C. albicans biofilm-defective mutants, in which homozygous insertions in NUP85, MDS3, KEM1, and SUV3 were found to block biofilm development. Confocal microscopic examination suggests that nup85, suv3, and mds3 mutations cause early-phase arrest, whereas the kem1 mutation causes intermediate-phase arrest. All of the mutants are defective in hypha production in several media. Analysis of mixed-biofilm development indicates that all of the mutants are defective in the production of hyphae in the context of a biofilm. Because all of the mutants are defective in the retention of cells in the biofilm, we infer that hyphae provide an adherent scaffold that stabilizes the biofilm structure.
Collapse
Affiliation(s)
- Mathias L Richard
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
14
|
Pathak R, Bogomolnaya LM, Guo J, Polymenis M. A role for KEM1 at the START of the cell cycle in Saccharomyces cerevisiae. Curr Genet 2005; 48:300-9. [PMID: 16240118 DOI: 10.1007/s00294-005-0030-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 09/15/2005] [Accepted: 09/22/2005] [Indexed: 10/25/2022]
Abstract
KEM1 is a Saccharomyces cerevisiae gene, conserved in all eukaryotes, whose deletion leads to pleiotropic phenotypes. For the most part, these phenotypes are thought to arise from Kem1p's role in RNA turnover, because Kem1p is a major 5'-3' cytoplasmic exonuclease. For example, the exonuclease-dependent role of Kem1p is involved in the exit from mitosis, by degrading the mRNA of the mitotic cyclin CLB2. Here, we describe the identification of a KEM1 truncation, KEM1(1-975), that accelerated the G1 to S transition and initiation of DNA replication when over-expressed. Interestingly, although this truncated Kem1p lacked exonuclease activity, it could efficiently complement another function affected by the loss of KEM1, microtubule-dependent nuclear migration. Taken together, the results we report here suggest that Kem1p might have a previously unrecognized role at the G1 to S transition, but not through its exonuclease activity. Our findings also support the notion that Kem1p is a multifunctional protein with distinct and separable roles.
Collapse
Affiliation(s)
- Ritu Pathak
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
15
|
An HS, Lee KH, Kim J. Identification of an exoribonuclease homolog,CaKEM1/CaXRN1, inCandida albicansand its characterization in filamentous growth. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09602.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|