1
|
Kurzylewska M, Bomba A, Dworaczek K, Pękala-Safińska A, Turska-Szewczuk A. Structure and gene cluster annotation of the O-antigen of Aeromonas sobria strain K928 isolated from common carp and classified into the new Aeromonas PGO1 serogroup. Carbohydr Res 2023; 528:108809. [PMID: 37086562 DOI: 10.1016/j.carres.2023.108809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Aeromonas sobria strain K928 was isolated from a common carp during a Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreak on a Polish fish farm and classified into the new provisional PGO1 serogroup. The lipopolysaccharide of A. sobria K928 was subjected to mild acid hydrolysis, and the O-specific polysaccharide, which was isolated by gel-permeation chromatography, was studied using sugar and methylation analyses and 1H and 13C NMR spectroscopy. The following structure of the branched O-specific polysaccharide repeating unit of A. sobria K928 was established. →2)[α-D-Fucp3NRHb-(1→3)]-α-L-Rhap-(1→3)-β-L-Rhap-(1→4)-α-L-Rhap-(1→3)-β-D-FucpNAc-(1→ The O-antigen gene cluster was identified and characterized in the genome of the A. sobria K928 strain after comparison with sequences in the available databases. The composition of the O-antigen genetic region was found to be consistent with the O-polysaccharide structure, and its organization was proposed.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
2
|
Liu YF, Liao CT, Chiang YC, Li CE, Hsiao YM. WxcX is involved in bacterial attachment and virulence in Xanthomonas campestris pv. campestris. J Basic Microbiol 2018; 58:403-413. [PMID: 29504631 DOI: 10.1002/jobm.201700591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/08/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causative agent of black rot in crucifers. Here, one EZ-Tn5 transposon mutant of Xcc, altered in bacterial attachment, was isolated. Further analysis revealed that the transposon was inserted in the wxcX gene (encodes a hypothetical protein) of the transposon mutant. Sequence analysis revealed that WxcX is highly conserved in Xanthomonas, but none has been characterized. In this study, it was indicated that mutation of wxcX resulted in enhanced bacterial attachment, reduced virulence on the host cabbage, and increased sensitivity to sodium dodecyl sulfate. The affected phenotypes of the wxcX mutant could be complemented to wild-type levels by the intact wxcX gene. Site-directed mutagenesis revealed that E408 and E411 are critical amino acid residues for WxcX function in bacterial attachment. Taken together, our results demonstrate the roles of wxcX in attachment, virulence, and tolerance to sodium dodecyl sulfate in Xanthomonas for the first time.
Collapse
Affiliation(s)
- Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao-Tsai Liao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ying-Chuan Chiang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chih-En Li
- Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yi-Min Hsiao
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
3
|
Wang B, Wu G, Zhang Y, Qian G, Liu F. Dissecting the virulence-related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:1859-1872. [PMID: 29392817 PMCID: PMC6638143 DOI: 10.1111/mpp.12664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 05/09/2023]
Abstract
Hypothetical proteins without defined functions are largely distributed in all sequenced bacterial genomes. Understanding their potent functionalities is a basic demand for bacteriologists. Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight of rice, is one of the model systems for the study of molecular plant pathology. One-quarter of proteins in the genome of this bacterium are defined as hypothetical proteins, but their roles in Xoo pathogenicity are unknown. Here, we generated in-frame deletions for six hypothetical proteins selected from strain PXO99A and found that one of them (PXO_03177) is required for the full virulence of this strain. PXO_03177 is conserved in Xanthomonas, and is predicted to contain two domains relating to polysaccharide synthesis. However, we found that mutation of this gene did not affect the production or modification of extracellular polysaccharides (EPSs) and lipopolysaccharides (LPSs), two major polysaccharides produced by Xoo relating to its infection. Interestingly, we found that inactivation of PXO_03177 significantly impaired biofilm formation and tolerance to sodium dodecyl sulfate (SDS), both of which are considered to play key roles during Xoo infection in rice leaves. These findings thus enable us to define a function for PXO_03177 in the virulence of Xoo. Furthermore, we also found that the global regulator Clp controls the transcription of PXO_03177 by direct binding to its promoter region, presenting the first cellular regulatory pathway for the modulation of expression of this hypothetical protein gene. Our results provide reference information for PXO_03177 homologues in Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guichun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Yuqiang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing 210014China
| |
Collapse
|
4
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|
5
|
Senchenkova SN, Guo X, Naumenko OI, Shashkov AS, Perepelov AV, Liu B, Knirel YA. Structure and genetics of the O-antigens of Escherichia coli O182-O187. Carbohydr Res 2016; 435:58-67. [PMID: 27710814 DOI: 10.1016/j.carres.2016.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 11/25/2022]
Abstract
O-polysaccharides (OPSs) were obtained by mild acid degradation of the lipopolysaccharides of Escherichia coli O182-O187, and their structures were established by sugar analysis, Smith degradation, and 1H and 13C NMR spectroscopy. In addition to the monosaccharides that occur often in E. coli OPSs (d-Glc, d-Gal, d-Man, d-GlcNAc, d-GalNAc, d-GlcA, l-Fuc, d-Rib), a number of less common components were identified as the OPS constituents, including 2-acetamido-2-deoxy-l-quinovose and 4-deoxy-4-[(S)-3-hydroxybutanoyl-l-alanyl]-d-quinovose (O186), 3-acetamido-3-deoxy-d-fucose (O187), 3-deoxy-3-[(R)-3-hydroxybutanoyl]-d-fucose (O184), and 2,3-diacetamido-2,3-dideoxy-l-rhamnose (O182). The OPS structures of E. coli O183 and O182 are identical to those of the OPS of Shigella boydii type 10 and the capsular polysaccharide of E. coli K48, respectively. The OPSs of E. coli O186 and O123 are closely related differing in the presence of a Glc residue in the former in place of a GlcNAc residue in the latter. The O-antigen gene clusters of the bacteria studied were analyzed and their contents were found to be consistent with the OPS structures. Predicted glycosyltransferases encoded in the gene clusters were tentatively assigned to glycosidic linkages based on similarities to sequences of other E. coli O-serogroups available from GenBank and taking into account the OPS structures established.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Xi Guo
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Olesya I Naumenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457, Tianjin, PR China
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| |
Collapse
|
6
|
Taylor VL, Hoage JFJ, Thrane SW, Huszczynski SM, Jelsbak L, Lam JS. A Bacteriophage-Acquired O-Antigen Polymerase (Wzyβ) from P. aeruginosa Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzyα. Front Microbiol 2016; 7:393. [PMID: 27065964 PMCID: PMC4815439 DOI: 10.3389/fmicb.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a serotype converting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3′ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphatase activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272, and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jesse F J Hoage
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | | | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Kongens Lyngby, Denmark
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| |
Collapse
|
7
|
Vinnitskiy DZ, Ustyuzhanina NE, Nifantiev NE. Natural bacterial and plant biomolecules bearing α-d-glucuronic acid residues. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Cai CS, Zhu YZ, Zhong Y, Xin XF, Jiang XG, Lou XL, He P, Qin JH, Zhao GP, Wang SY, Guo XK. Development of O-antigen gene cluster-specific PCRs for rapid typing six epidemic serogroups of Leptospira in China. BMC Microbiol 2010; 10:67. [PMID: 20196873 PMCID: PMC2843611 DOI: 10.1186/1471-2180-10-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/03/2010] [Indexed: 01/06/2023] Open
Abstract
Background Leptospira is the causative agent of leptospirosis. The O-antigen is the distal part of the lipopolysaccharide, which is a key component of outer membrane of Gram-negative bacteria and confers serological specificity. The epidemiology and clinical characteristics of leptospirosis are relative to the serology based taxonomic unit. Identification of Leptospira strains by serotyping is laborious and has several drawbacks. Results In this study, the O-antigen gene clusters of four epidemic Leptospira serogroups (serogroup Canicola, Autumnalis, Grippotyphosa and Hebdomadis) in China were sequenced and all genes were predicted in silico. Adding published sequences of two serogroups, Icterohaemorrhagiae (strain Lai and Fiocruz L1-130) and Sejroe (strain JB197 and L550), we identified six O-antigen-specific genes for six epidemic serogroups in China. PCR assays using these genes were developed and tested on 75 reference strains and 40 clinical isolates. Conclusion The results show that the PCR-based assays can be reliable and alternative means for rapid typing of these six serogroups of Leptospira.
Collapse
Affiliation(s)
- Cheng-Song Cai
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li Y, Cao B, Liu B, Liu D, Gao Q, Peng X, Wu J, Bastin DA, Feng L, Wang L. Molecular detection of all 34 distinct O-antigen forms of Shigella. J Med Microbiol 2009; 58:69-81. [DOI: 10.1099/jmm.0.000794-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella is the cause of shigellosis or bacillary dysentery, the occurrence of which is estimated to be 165 million cases per year worldwide, resulting in 1.1 million deaths. Rapid and reliable assays for detecting and identifying Shigella in food, environmental and clinical samples are therefore necessary. Shigella species are traditionally identified by their O antigens. This study developed a DNA microarray targeting O-serotype-specific genes to detect all 34 distinct O-antigen forms of Shigella, including Shigella boydii types 1–18, Shigella dysenteriae types 1–13, Shigella flexneri types 1–5 and 6, and Shigella sonnei. A total of 282 strains were used to test the specificity of the microarray, including 186 Shigella and Escherichia coli representative strains, 86 Shigella clinical isolates and ten strains of other bacterial species that are commonly isolated from food or clinical stool specimens. The oligonucleotide probes were printed on the microarray in concentrations from 1 to 100 μM, and 10 μM proved to be the optimal probe concentration. The detection sensitivity for each serotype was 50 ng genomic DNA or 1 c.f.u. in 25 g milk powder sample following a 6 h enrichment in broth. The microarray is specific, sensitive and reproducible, and, to our knowledge, is the first report of a microarray for serotyping all O-antigen forms of Shigella.
Collapse
Affiliation(s)
- Yayue Li
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Biochip Corporation, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin University of Science and Technology, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
| | - Boyang Cao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Bin Liu
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Dan Liu
- Tianjin Biochip Corporation, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Qili Gao
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, PR China
| | - Xia Peng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Junli Wu
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - David A. Bastin
- Tianjin Biochip Corporation, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
| | - Lei Wang
- Tianjin Research Center for Functional Genomics and Biochips, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, PR China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, PR China
- Tianjin Biochip Corporation, 23 Hongda Street, TEDA, Tianjin 300457, PR China
| |
Collapse
|
10
|
Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, Reeves PR, Wang L. Structure and genetics ofShigellaO antigens. FEMS Microbiol Rev 2008; 32:627-53. [DOI: 10.1111/j.1574-6976.2008.00114.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Lu GT, Ma ZF, Hu JR, Tang DJ, He YQ, Feng JX, Tang JL. A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris. Microbiology (Reading) 2007; 153:737-746. [PMID: 17322194 DOI: 10.1099/mic.0.2006/001388-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease in cruciferous plants. The extracellular polysaccharide (EPS) produced by Xcc is an important pathogenicity factor and also has a range of industrial uses. In preliminary work a number of transposon-mediated insertion mutants in Xcc with defects in EPS production were identified. Here, one of these mutated loci was investigated in detail. Six ORFs within the locus (ORFs XC3811-3816) were disrupted by plasmid integration. Mutation of XC3813, XC3814 or XC3815 resulted in significantly reduced EPS production and significantly reduced virulence on the host plant Chinese radish (Raphanus sativus). The EPS production and virulence of XC3813, XC3814 and XC3815 mutants could be restored by intact XC3813, XC3814 and XC3815 genes, respectively, when provided in trans. Although bioinformatic analysis suggested a role for XC3814 and XC3815 in lipopolysaccharide biosynthesis, the lipopolysaccharides produced by the mutants were indistinguishable from those of the wild-type, as judged by electrophoretic mobility in SDS-polyacrylamide gels. These results reveal that XC3813, XC3814 and XC3815 comprise a novel gene cluster involved in EPS production and virulence of Xcc.
Collapse
Affiliation(s)
- Guang-Tao Lu
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zeng-Feng Ma
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jiang-Ru Hu
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Dong-Jie Tang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yong-Qiang He
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jia-Xun Feng
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Ji-Liang Tang
- Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Li Y, Liu D, Cao B, Han W, Liu Y, Liu F, Guo X, Bastin DA, Feng L, Wang L. Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli strains. J Clin Microbiol 2006; 44:4376-83. [PMID: 17021058 PMCID: PMC1698391 DOI: 10.1128/jcm.01389-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella and pathogenic Escherichia coli are major causes of human infectious diseases and are responsible for millions of cases of diarrhea worldwide every year. A convenient and rapid method to identify highly pathogenic serotypes of Shigella and E. coli is needed for large-scale epidemiologic study, timely clinical diagnosis, and reliable quarantine of the pathogens. In this study, a DNA microarray targeting O-serotype-specific genes was developed to detect 15 serotypes of Shigella and E. coli, including Shigella sonnei; Shigella flexneri type 2a; Shigella boydii types 7, 9, 13, 16, and 18; Shigella dysenteriae types 4, 8, and 10; and E. coli O55, O111, O114, O128, and O157. The microarray was tested against 186 representative strains of all Shigella and E. coli O serotypes, 38 clinical isolates, and 9 strains of other bacterial species that are commonly present in stool samples and was shown to be specific and reproducible. The detection sensitivity was 50 ng genomic DNA or 10(4) CFU per ml in mock stool specimens. This is the first report of a microarray for serotyping Shigella and pathogenic E. coli. The method has a number of advantages over traditional bacterial culture and antiserum agglutination methods and is promising for applications in basic microbiological research, clinical diagnosis, food safety, and epidemiological surveillance.
Collapse
Affiliation(s)
- Yayue Li
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hong Da Street, TEDA, Tianjin 300457, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Escherichia coli is usually a non-pathogenic member of the human colonic flora. However, certain strains have acquired virulence factors and may cause a variety of infections in humans and in animals. There are three clinical syndromes caused by E. coli: (i) sepsis/meningitis; (ii) urinary tract infection and (iii) diarrhoea. Furthermore the E. coli causing diarrhoea is divided into different 'pathotypes' depending on the type of disease, i.e. (i) enterotoxigenic; (ii) enteropathogenic; (iii) enteroinvasive; (iv) enterohaemorrhagic; (v) enteroaggregative and (vi) diffusely adherent. The serotyping of E. coli based on the somatic (O), flagellar (H) and capsular polysaccharide antigens (K) is used in epidemiology. The different antigens may be unique for a particular serogroup or antigenic determinants may be shared, resulting in cross-reactions with other serogroups of E. coli or even with other members of the family Enterobacteriacea. To establish the uniqueness of a particular serogroup or to identify the presence of common epitopes, a database of the structures of O-antigenic polysaccharides has been created. The E. coli database (ECODAB) contains structures, nuclear magnetic resonance chemical shifts and to some extent cross-reactivity relationships. All fields are searchable. A ranking is produced based on similarity, which facilitates rapid identification of strains that are difficult to serotype (if known) based on classical agglutinating methods. In addition, results pertinent to the biosynthesis of the repeating units of O-antigens are discussed. The ECODAB is accessible to the scientific community at http://www.casper.organ.su.se/ECODAB/.
Collapse
Affiliation(s)
- Roland Stenutz
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Mazur A, Marczak M, Król JE, Skorupska A. Topological and transcriptional analysis of pssL gene product: a putative Wzx-like exopolysaccharide translocase in Rhizobium leguminosarum bv. trifolii TA1. Arch Microbiol 2005; 184:1-10. [PMID: 16044265 DOI: 10.1007/s00203-005-0018-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/29/2005] [Accepted: 04/04/2005] [Indexed: 11/30/2022]
Abstract
An identified pssL gene is yet another one, besides the pssT, pssN and pssP genes, encoding for a protein engaged in polysaccharide polymerization and export in Rhizobium leguminosarum bv. trifolii strain TA1 (RtTA1). Amino acid sequence similarity and hypothetical protein secondary structure placed the PssL protein within Wzx (RfbX) translocases with putative flippase function that belong to the polysaccharide specific transport (PST) family. The predicted secondary structure of the PssL membrane protein was examined with a series of PssL-PhoA and PssL-LacZ translational fusions. The results support the hypothesis of PssL being a member of PST protein family comprising transporters with 12 membrane spanning segments and amino and carboxyl termini located in the cytoplasm. Results of semi-quantitative RT-PCR showed that the initial abundance of mRNA encoding PssL protein was relatively lower when compared to the quantity of the previously identified PssT membrane protein. PssL might be a good candidate for Wzx-like protein that together with PssT (Wzy protein) could be responsible for Wzx/Wzy-like-dependent EPS polymerization and translocation in RtTA1.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of M. Curie-Skłodowska, 19 Akademicka St., 20-033, Lublin, Poland.
| | | | | | | |
Collapse
|
15
|
Beutin L, Tao J, Feng L, Krause G, Zimmermann S, Gleier K, Xia Q, Wang L. Sequence analysis of the Escherichia coli O15 antigen gene cluster and development of a PCR assay for rapid detection of intestinal and extraintestinal pathogenic E. coli O15 strains. J Clin Microbiol 2005; 43:703-10. [PMID: 15695667 PMCID: PMC548065 DOI: 10.1128/jcm.43.2.703-710.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A collection of 33 Escherichia coli serogroup O15 strains was studied with regard to O:H serotypes and virulence markers and for detection of the O-antigen-specific genes wzx and wzy. The strains were from nine different countries, originated from healthy or diseased humans and animals and from food, and were isolated between 1941 and 2003. On the basis of virulence markers and clinical data the strains could be split into different pathogroups, such as uropathogenic E. coli, enteropathogenic E. coli, Shiga toxin-producing E. coli, and enteroaggregative E. coli. H serotyping and genotyping of the flagellin (fliC) gene revealed 11 different H types and a close association between certain H types, virulence markers, and pathogroups was found. Nucleotide sequence analysis of the O-antigen gene cluster revealed putative genes for biosynthesis of O15 antigen. PCR assays were developed for sensitive and specific detection of the O15-antigen-specific genes wzx and wzy. The high pathotype diversity found in the collection of 33 O15 strains contrasted with the high level of similarity found in the genes specific to the O15 antigen. This might indicate that the O15 determinant has been spread by horizontal gene transfer to a number of genetically unrelated strains of E. coli.
Collapse
Affiliation(s)
- Lothar Beutin
- Division of Microbial Toxins, Robert Koch Institute, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tao J, Wang L, Liu D, Li Y, Bastin DA, Geng Y, Feng L. Molecular analysis ofShigella boydiiO1 O-antigen gene cluster and its PCR typing. Can J Microbiol 2005; 51:387-92. [PMID: 16088333 DOI: 10.1139/w05-015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shigella is an important human pathogen and is closely related to Escherichia coli. O-antigen is the most variable part of the lipopolysaccharide on the cell surface of Gram-negative bacteria and plays an important role in pathogenicity. The O-antigen gene cluster of S. boydii O1 was sequenced. The putative genes encoding enzymes for rhamnose synthesis, transferases, O-unit flippase, and O-unit polymerase were identified on the basis of homology. The O-antigen gene clusters of S. boydii O1 and E. coli O149, which share the same O-antigen form, were found to have the same genes and organization by adjacent gene PCR assay. Two genes specific for S. boydii O1 and E. coli O149 were identified by PCR screening against E. coli- and Shigella-type strains of the 186 known O-antigen forms and 39 E. coli clinical isolates. A PCR sensitivity of 103to 104CFU/mL overnight culture of S. boydii O1 and E. coli O149 was obtained. S. boydii O1 and E. coli O149 were differentiated by PCR using lacZ- and cadA-based primers.Key words: O-antigen gene cluster, S. boydii O1, E. coli O149, molecular typing.
Collapse
Affiliation(s)
- Jiang Tao
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Senchenkova SN, Feng L, Yang J, Shashkov AS, Cheng J, Liu D, Knirel YA, Reeves PR, Jin Q, Ye Q, Wang L. Structural and genetic characterization of the Shigella boydii type 10 and type 6 O antigens. J Bacteriol 2005; 187:2551-4. [PMID: 15774901 PMCID: PMC1065213 DOI: 10.1128/jb.187.7.2551-2554.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of the O antigens of Shigella boydii types 10 and 6 by chemical analysis and nuclear magnetic resonance spectroscopy showed that their structures are similar, with the only difference being the presence or absence of d-ribofuranose, which is the immunodominant sugar in S. boydii type 10. In S. boydii type 6, a residue previously reported as alpha-d-GlcpA, was shown to be beta-d-GlcpA as in S. boydii type 10. S. boydii types 10 and 6 are reported not to cross-react serologically, and the role of d-ribofuranose in the specificity of S. boydii was confirmed by making a mutant of type 10 that lacked d-ribofuranose. However, S. boydii type 11, which has a d-ribofuranose but with different linkage does show cross-reaction with type 10. The O-antigen gene loci of S. boydii types 10 and 6 were shown to be virtually identical except that orf8 (wbaM), which was confirmed as the ribofuranosyltransferase gene, is interrupted by IS629 in type 6. Therefore, it is proposed that the O-antigen gene cluster of S. boydii type 6 was derived from type 10 by an IS element insertion.
Collapse
Affiliation(s)
- Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng L, Senchenkova SN, Tao J, Shashkov AS, Liu B, Shevelev SD, Reeves PR, Xu J, Knirel YA, Wang L. Structural and genetic characterization of enterohemorrhagic Escherichia coli O145 O antigen and development of an O145 serogroup-specific PCR assay. J Bacteriol 2005; 187:758-64. [PMID: 15629947 PMCID: PMC543545 DOI: 10.1128/jb.187.2.758-764.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O145 strains are emerging as causes of hemorrhagic colitis and hemolytic uremic syndrome. In this study, we present the structure of the E. coli O145 O antigen and the sequence of its gene cluster. The O145 antigen has repeat units containing three monosaccharide residues: 2-acetamido-2-deoxy-D-glucose (GlcNAc), 2-acetamidoylamino-2,6-dideoxy-L-galactose, and N-acetylneuraminic acid. It is very closely related to Salmonella enterica serovar Touera and S. enterica subsp. arizonae O21 antigen. The E. coli O145 gene cluster is located between the JUMPStart sequence and the gnd gene and consists of 15 open reading frames. Putative genes for the synthesis of the O-antigen constituents, for sugar transferase, and for O-antigen processing were annotated based on sequence similarities and the presence of conserved regions. The putative genes located in the E. coli O145 O-antigen gene cluster accounted for all functions expected for synthesis of the structure. An E. coli O145 serogroup-specific PCR assay based on the genes wzx and wzy was also developed by screening E. coli and Shigella isolates of different serotypes.
Collapse
Affiliation(s)
- Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA College, 23# HongDa St., TEDA, Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|