1
|
Abstract
Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms. Carbapenem-resistant Gram-negative bacteria are considered a major threat to global health. Imipenem (IMP) is used as a last line of treatment against these pathogens, but its efficacy is diminished by the emergence of resistance. We applied a whole-genome screen in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates that were submitted to chemical mutagenesis, selected for IMP resistance, and characterized by next-generation sequencing. A comparative analysis of IMP-resistant clones showed that most of the highly mutated genes shared by the three species encoded proteins involved in transcription or signal transduction. Of these, the rpoD gene was one of the most prevalent and an E. coli strain disrupted for rpoD displayed a 4-fold increase in resistance to IMP. E. coli and K. pneumoniae also specifically shared several mutated genes, most involved in membrane/cell envelope biogenesis, and the contribution in IMP susceptibility was experimentally proven for amidases, transferases, and transglycosidases. P. aeruginosa differed from the two Enterobacteriaceae isolates with two different resistance mechanisms, with one involving mutations in the oprD porin or, alternatively, in two-component systems. Our chemogenomic screen performed with the three species has highlighted shared and species-specific responses to IMP. IMPORTANCE Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms.
Collapse
|
2
|
Upregulation of PBP1B and LpoB in cysB Mutants Confers Mecillinam (Amdinocillin) Resistance in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00612-19. [PMID: 31332059 PMCID: PMC6761508 DOI: 10.1128/aac.00612-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/12/2019] [Indexed: 11/20/2022] Open
Abstract
Mecillinam (amdinocillin) is a β-lactam antibiotic that inhibits the essential penicillin-binding protein 2 (PBP2). In clinical isolates of Escherichia coli from urinary tract infections, inactivation of the cysB gene (which encodes the main regulator of cysteine biosynthesis, CysB) is the major cause of resistance. How a nonfunctional CysB protein confers resistance is unknown, however, and in this study we wanted to examine the mechanism of resistance. Mecillinam (amdinocillin) is a β-lactam antibiotic that inhibits the essential penicillin-binding protein 2 (PBP2). In clinical isolates of Escherichia coli from urinary tract infections, inactivation of the cysB gene (which encodes the main regulator of cysteine biosynthesis, CysB) is the major cause of resistance. How a nonfunctional CysB protein confers resistance is unknown, however, and in this study we wanted to examine the mechanism of resistance. Results show that cysB mutations cause a gene regulatory response that changes the expression of ∼450 genes. Among the proteins that show increased levels are the PBP1B, LpoB, and FtsZ proteins, which are known to be involved in peptidoglycan biosynthesis. Artificial overexpression of either PBP1B or LpoB in a wild-type E. coli strain conferred mecillinam resistance; conversely, inactivation of either the mrcB gene (which encodes PBP1B) or the lpoB gene (which encodes the PBP1B activator LpoB) made cysB mutants susceptible. These results show that expression of the proteins PBP1B and LpoB is both necessary and sufficient to confer mecillinam resistance. The addition of reducing agents to a cysB mutant converted it to full susceptibility, with associated downregulation of PBP1B, LpoB, and FtsZ. We propose a model in which cysB mutants confer mecillinam resistance by inducing a response that causes upregulation of the PBP1B and LpoB proteins. The higher levels of these two proteins can then rescue cells with mecillinam-inhibited PBP2. Our results also show how resistance can be modulated by external conditions such as reducing agents.
Collapse
|
3
|
Amar A, Pezzoni M, Pizarro RA, Costa CS. New envelope stress factors involved in σ E activation and conditional lethality of rpoE mutations in Salmonella enterica. MICROBIOLOGY-SGM 2018; 164:1293-1307. [PMID: 30084765 DOI: 10.1099/mic.0.000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σE, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σE activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σE expression. We demonstrate that UVA radiation induces σE activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σE activity in an RseA-dependent fashion. σE activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.
Collapse
Affiliation(s)
- Agustina Amar
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Magdalena Pezzoni
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
4
|
Bousquet A, Bugier S, Larréché S, Bigaillon C, Weber P, Delacour H, Valade E, De Briel D, Mérens A. Clinical isolates of Escherichia coli solely resistant to mecillinam: prevalence and epidemiology. Int J Antimicrob Agents 2017; 51:493-497. [PMID: 29154843 DOI: 10.1016/j.ijantimicag.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022]
Abstract
In routine susceptibility testing of Gram-negative bacteria, a particular resistance phenotype was observed: an Escherichia coli isolate from a urine sample exhibited resistance solely to mecillinam (MEC) but was fully susceptible to other β-lactam antibiotics (MEC-R-BL-S). The objectives as this study were to determine the prevalence of this phenotype and to describe the phenotype, molecular epidemiology and genetic background. Between 1 January 2014 and 31 January 2016, MEC-R-BL-S E. coli isolates from urine were collected and genes previously reported as mostly involved in MEC resistance were analysed. The genetic relatedness among isolates was investigated by repetitive element sequence-based PCR (rep-PCR) and multilocus sequence typing (MLST). Ten MEC-R-BL-S isolates were collected, accounting for 0.4% (10/2547) of all E. coli obtained from urine samples, 0.9% (10/1135) of ampicillin-susceptible E. coli isolates and 9.6% (10/104) of MEC-R E. coli isolates. The isolates appeared as small colonies with round morphology and had impaired fitness. The isolates were not clonal and belonged to various extraintestinal or commensal E. coli phylogroups. Mutations in the cysB gene were evidenced in all clinical isolates. In conclusion, microbiologists should be aware of these isolates with a particular susceptibility phenotype, which is not due to error in disk diffusion but is a real non-enzymatic antibiotic resistance pattern.
Collapse
Affiliation(s)
- Aurore Bousquet
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France.
| | - Sarah Bugier
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France
| | - Sébastien Larréché
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France
| | - Christine Bigaillon
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France
| | - Philippe Weber
- Laboratoire de biologie médicale, BIO-VSM LAB, Torcy, France
| | - Hervé Delacour
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France
| | - Eric Valade
- Institut de Recherche Biomédicale des Armées/Unité de bactériologie, Brétigny-sur-Orge, France
| | | | - Audrey Mérens
- Laboratoire de microbiologie, Hôpital d'Instruction des Armées Bégin, 69 avenue de Paris, 94160 Saint-Mandé, France
| |
Collapse
|
5
|
Lai GC, Cho H, Bernhardt TG. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet 2017; 13:e1006934. [PMID: 28749938 PMCID: PMC5549755 DOI: 10.1371/journal.pgen.1006934] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022] Open
Abstract
Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes to expand the cell wall matrix. Penicillin and related beta-lactams are one of our oldest and most effective classes of antibiotics. These drugs target enzymes called penicillin-binding proteins (PBPs) that build the essential cell wall that surrounds bacterial cells. Beta-lactams have long been used as chemical and genetic probes to uncover the mechanisms required for proper bacterial cell wall biogenesis. In this report, we use a high-throughput genetic approach to comprehensively identify nearly all genetic loci that promote resistance to the beta-lactam mecillinam in the model organism Escherichia coli. Moreover, by performing our analysis in several different genetic backgrounds we were able to generate a rich resource that defines those alleles that promote resistance by inducing a stress response and those that are more likely to do so by directly modulating cell wall synthesis. Further characterization of one of the stress response-independent resistance loci helped us discover that enzymes that cleave crosslinks in the cell wall are capable of activating cell wall synthesis by a subset of PBPs. Our analysis of the activation mechanism challenges the prevailing view in the field that cell wall synthases and cell wall cleaving enzymes must work in multi-enzyme complexes to assemble the cell wall.
Collapse
Affiliation(s)
- Ghee Chuan Lai
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Hongbaek Cho
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Thomas G Bernhardt
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
6
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
7
|
Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F. SalmonellaTyphimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. J Antimicrob Chemother 2016; 71:3409-3415. [DOI: 10.1093/jac/dkw311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
|
8
|
Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2015; 159:1300-11. [PMID: 25480295 DOI: 10.1016/j.cell.2014.11.017] [Citation(s) in RCA: 412] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/25/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
Abstract
Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development.
Collapse
|
9
|
Amdinocillin (Mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli. Antimicrob Agents Chemother 2015; 59:1718-27. [PMID: 25583718 DOI: 10.1128/aac.04819-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amdinocillin (mecillinam) is a β-lactam antibiotic that is used mainly for the treatment of uncomplicated urinary tract infections. The objectives of this study were to identify mutations that confer amdinocillin resistance on laboratory-isolated mutants and clinical isolates of Escherichia coli and to determine why amdinocillin resistance remains rare clinically even though resistance is easily selected in the laboratory. Under laboratory selection, frequencies of mutation to amdinocillin resistance varied from 8 × 10(-8) to 2 × 10(-5) per cell, depending on the concentration of amdinocillin used during selection. Several genes have been demonstrated to give amdinocillin resistance, but here eight novel genes previously unknown to be involved in amdinocillin resistance were identified. These genes encode functions involved in the respiratory chain, the ribosome, cysteine biosynthesis, tRNA synthesis, and pyrophosphate metabolism. The clinical isolates exhibited significantly greater fitness than the laboratory-isolated mutants and a different mutation spectrum. The cysB gene was mutated (inactivated) in all of the clinical isolates, in contrast to the laboratory-isolated mutants, where mainly other types of more costly mutations were found. Our results suggest that the frequency of mutation to amdinocillin resistance is high because of the large mutational target (at least 38 genes). However, the majority of these resistant mutants have a low growth rate, reducing the probability that they are stably maintained in the bladder. Inactivation of the cysB gene and a resulting loss of cysteine biosynthesis are the major mechanism of amdinocillin resistance in clinical isolates of E. coli.
Collapse
|
10
|
Costa CS, Pizarro RA, Antón DN. Influence of RpoS, cAMP-receptor protein, and ppGpp on expression of the opgGH operon and osmoregulated periplasmic glucan content of Salmonella enterica serovar Typhimurium. Can J Microbiol 2010; 55:1284-93. [PMID: 19940937 DOI: 10.1139/w09-086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A transcriptional fusion (opgG1::MudJ) to the opgGH operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) LT2, isolated by resistance to mecillinam, was used to study the influence of global regulators RpoS, ppGpp, and cAMP/cAMP-receptor protein (CRP) on expression of the opgGH operon and osmoregulated periplasmic glucan (OPG) content. Neither high growth medium osmolarity nor absence of ppGpp or CRP had important effects on opgG1::MudJ expression in exponential cultures. However, under the same conditions, OPG content was strongly decreased by high osmolarity or cAMP/CRP defectiveness, and reduced to a half by lack of ppGpp. In stationary cultures, high osmolarity as well as CRP loss caused significant descents in opgG1::MudJ expression that were compensated by inactivation of RpoS sigma factor. No effect of RpoS inactivation on OPG content was observed. It is concluded that opgGH expression in S. Typhimurium is only slightly affected by high osmolarity, but is inversely modulated by RpoS level. On the other hand, osmolarity and the cAMP/CRP global regulatory system appear to control OPG content, either directly or indirectly, mainly at the post-transcriptional level.
Collapse
Affiliation(s)
- Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, 1650 San Martín, Argentina
| | | | | |
Collapse
|
11
|
Kim CK, Yum JH, Lee SG, Lee Y, Choi JY, Kim JM, Lee K, Chong Y. In vitro Activities of Mecillinam Against Clinical Isolates of Enterobacteriaceae. Infect Chemother 2009. [DOI: 10.3947/ic.2009.41.3.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Chang-Ki Kim
- Korean Institute of Tuberculosis, The Korean National Tuberculosis Association, Seoul, Korea
| | - Jong Hwa Yum
- Department of Biomedical Laboratory Science, Dong-Eui University College of Natural Science, Busan, Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Myung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yunsop Chong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Turnbull AL, Surette MG. l-Cysteine is required for induced antibiotic resistance in actively swarming Salmonella enterica serovar Typhimurium. Microbiology (Reading) 2008; 154:3410-3419. [DOI: 10.1099/mic.0.2008/020347-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Amy L. Turnbull
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Michael G. Surette
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary AB T2N 4N1, Canada
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| |
Collapse
|