1
|
Abdulrahman RF, Davies RL. Diversity and characterization of temperate bacteriophages induced in Pasteurella multocida from different host species. BMC Microbiol 2021; 21:97. [PMID: 33784980 PMCID: PMC8008546 DOI: 10.1186/s12866-021-02155-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bacteriophages play important roles in the evolution of bacteria and in the emergence of new pathogenic strains by mediating the horizontal transfer of virulence genes. Pasteurella multocida is responsible for different disease syndromes in a wide range of domesticated animal species. However, very little is known about the influence of bacteriophages on disease pathogenesis in this species. Results Temperate bacteriophage diversity was assessed in 47 P. multocida isolates of avian (9), bovine (8), ovine (10) and porcine (20) origin. Induction of phage particles with mitomycin C identified a diverse range of morphological types representing both Siphoviridae and Myoviridae family-types in 29 isolates. Phage of both morphological types were identified in three isolates indicating that a single bacterial host may harbour multiple prophages. DNA was isolated from bacteriophages recovered from 18 P. multocida isolates and its characterization by restriction endonuclease (RE) analysis identified 10 different RE types. Phage of identical RE types were identified in certain closely-related strains but phage having different RE types were present in other closely-related isolates suggesting possible recent acquisition. The host range of the induced phage particles was explored using plaque assay but only 11 (38%) phage lysates produced signs of infection in a panel of indicator strains comprising all 47 isolates. Notably, the majority (9/11) of phage lysates which caused infection originated from two groups of phylogenetically unrelated ovine and porcine strains that uniquely possessed the toxA gene. Conclusions Pasteurella multocida possesses a wide range of Siphoviridae- and Myoviridae-type bacteriophages which likely play key roles in the evolution and virulence of this pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02155-9.
Collapse
Affiliation(s)
- Rezheen F Abdulrahman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Pathology and Microbiology Department, Collage of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
2
|
Urban-Chmiel R, Wernicki A, Wawrzykowski J, Puchalski A, Nowaczek A, Dec M, Stęgierska D, Alomari MMM. Protein profiles of bacteriophages of the family Myoviridae-like induced on M. haemolytica. AMB Express 2018; 8:102. [PMID: 29923151 PMCID: PMC6008273 DOI: 10.1186/s13568-018-0630-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/14/2018] [Indexed: 01/03/2023] Open
Abstract
The aim of study was to isolate, characterize and analyse the protein profiles of Myoviridae-like bacteriophages obtained from M. haemolytica using MALDI TOF mass spectrometry. The material consisted of the M. haemolytica reference strain ATCC® BAA410, reference serotypes A1, A2, A5, A6, A7, A9, and A11, and wild-type isolates of serotype A1. Bacteriophage morphology was examined with a transmission electron microscope. The proteins were separated in SDS-PAGE and two-dimensional electrophoresis and characterized by MALDI-TOF. Among the phages obtained, seven were specific for strains A1, A2, A5, A6, A7 and 25, and PHL-1 was specific for the BAA410 strain. The protein profiles for the phages were very similar to one another, but differed from the reference phage in that they lacked protein fractions with molecular weights of 22.9, 56.3 and 73.1 kDa. 2D electrophoresis revealed significant differences in the size of proteins and their localization in the pH gradient. The most similar profiles were observed in phages specific for strains BAA-410 and A6. In all profiles two main spots were observed in the molecular weight range from 44 to 70 kDa at pH < 4. The results indicate that 2D electrophoresis is a very useful tool for characterization of phage protein profiles. An important objective was to determine the molecular differences between morphologically similar phages belonging to one family and to find similarities to phages specific for other pathogens. The study also assessed the suitability of the methods used to characterize phages.
Collapse
|
3
|
Cha K, Oh HK, Jang JY, Jo Y, Kim WK, Ha GU, Ko KS, Myung H. Characterization of Two Novel Bacteriophages Infecting Multidrug-Resistant (MDR) Acinetobacter baumannii and Evaluation of Their Therapeutic Efficacy in Vivo. Front Microbiol 2018; 9:696. [PMID: 29755420 PMCID: PMC5932359 DOI: 10.3389/fmicb.2018.00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/26/2018] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is emerging as a challenging nosocomial pathogen due to its rapid evolution of antibiotic resistance. We report characterization of two novel bacteriophages, PBAB08 and PBAB25, infecting clinically isolated, multidrug-resistant (MDR) A. baumannii strains. Both phages belonged to Myoviridae of Caudovirales as their morphology observed under an electron microscope. Their genomes were double stranded linear DNAs of 42,312 base pairs and 40,260 base pairs, respectively. The two phages were distinct from known Acinetobacter phages when whole genome sequences were compared. PBAB08 showed a 99% similarity with 57% sequence coverage to phage AB1 and PBAB25 showed a 97% similarity with 78% sequence coverage to phage IME_AB3. BLASTN significant alignment coverage of all other known phages were <30%. Seventy six and seventy genes encoding putative phage proteins were found in the genomes of PBAB08 and PBAB25, respectively. Their genomic organizations and sequence similarities were consistent with the modular theory of phage evolution. Therapeutic efficacy of a phage cocktail containing the two and other phages were evaluated in a mice model with nasal infection of MDR A. baumannii. Mice treated with the phage cocktail showed a 2.3-fold higher survival rate than those untreated in 7 days post infection. In addition, 1/100 reduction of the number of A. baumannii in the lung of the mice treated with the phage cocktail was observed. Also, inflammatory responses of mice which were injected with the phage cocktail by intraperitoneal, intranasal, or oral route was investigated. Increase in serum cytokine was minimal regardless of the injection route. A 20% increase in IgE production was seen in intraperitoneal injection route, but not in other routes. Thus, the cocktail containing the two newly isolated phages could serve as a potential candidate for therapeutic interventions to treat A. baummannii infections.
Collapse
Affiliation(s)
- Kyoungeun Cha
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea.,The Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Hynu K Oh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Jae Y Jang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Yunyeol Jo
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Won K Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Geon U Ha
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Kwan S Ko
- Samsung Medical Center, Sungkyukwan University School of Medicine, Suwon, South Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea.,The Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yong-In, South Korea
| |
Collapse
|
4
|
Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains. PLoS One 2015; 10:e0140140. [PMID: 26451916 PMCID: PMC4599942 DOI: 10.1371/journal.pone.0140140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/22/2015] [Indexed: 02/03/2023] Open
Abstract
Aim of Study The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. Material and Methods The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Results Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. Conclusions The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages, including sequence analysis of selected fragments. Moreover, standardization of methods for obtaining them in order to eliminate M. haemolytica bacteria involved in the etiopathogenesis of BRDC is essential.
Collapse
|
5
|
Niu YD, Cook SR, Wang J, Klima CL, Hsu YH, Kropinski AM, Turner D, McAllister TA. Comparative analysis of multiple inducible phages from Mannheimia haemolytica. BMC Microbiol 2015; 15:175. [PMID: 26318735 PMCID: PMC4553209 DOI: 10.1186/s12866-015-0494-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A). RESULTS Overall, four P2-like (535AP1, 587AP1, 1127AP1 and 2256AP1; genomes: 34.9-35.7 kb; G+C content: 41.5-42.1 %; genes: 51-53 coding sequences, CDSs), four λ-like (535AP2, 587AP2, 1152AP2 and 3927AP1; genomes: 48.6-52.1 kb; 41.1-41.4 % mol G+C; genes: 77-83 CDSs and 2 tRNAs) and one Mu-like (3927AP2; genome: 33.8 kb; 43.1 % mol G+C; encoding 50 CDSs) phages were identified. All P2-like phages are collinear with the temperate phage φMhaA1-PHL101 with 535AP1, 2256AP1 and 1152AP1 being most closely related, followed by 587AP1 and 1127AP1. Lambdoid phages are not collinear with any other known λ-type phages, with 587AP2 being distinct from 535AP2, 3927AP1 and 1152AP2. All λ-like phages contain genes encoding a toxin-antitoxin (TA) system and cell-associated haemolysin XhlA. The Mu-like phage induced from 3927A is closely related to the phage remnant φMhaMu2 from M. haemolytica PHL21, with similar Mu-like phages existing in the genomes of M. haemolytica 535A and 587A. CONCLUSIONS This is among the first reports of both λ- and Mu-type phages being induced from M. haemolytica. Compared to phages induced from commensal strains of M. haemolytica serotype A2, those induced from the more virulent A1 and A6 serotypes are more closely related. Moreover, when P2-, λ- and Mu-like phages co-existed in the M. haemolytica genome, only P2- and λ-like phages were detected upon induction, suggesting that Mu-type phages may be more resistant to induction. Toxin-antitoxin gene cassettes in λ-like phages may contribute to their genomic persistence or the establishment of persister subpopulations of M. haemolytica. Further work is required to determine if the cell-associated haemolysin XhlA encoded by λ-like phages contributes to the pathogenicity and ecological fitness of M. haemolytica.
Collapse
Affiliation(s)
- Yan D Niu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, T1J 4V6, Canada.
| | - Shaun R Cook
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Jiaying Wang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, People's Republic of China.
| | - Cassidy L Klima
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Yu-hung Hsu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, N1G 3W4, Canada. .,Department of Molecular Biology, Cellular Biology and Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
6
|
Hsu YH, Cook SR, Alexander TW, Klima CL, Niu YD, Selinger LB, McAllister TA. Investigation of Mannheimia haemolytica bacteriophages relative to host diversity. J Appl Microbiol 2013; 114:1592-603. [PMID: 23489937 DOI: 10.1111/jam.12185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/02/2013] [Accepted: 03/02/2013] [Indexed: 01/21/2023]
Abstract
AIMS This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle. METHODS AND RESULTS Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae- or Siphoviridae-like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (P < 0·0001). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70-79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2-like phage φMhaA1-PHL101. CONCLUSIONS Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.
Collapse
Affiliation(s)
- Y-H Hsu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Proximity-dependent inhibition of growth of Mannheimia haemolytica by Pasteurella multocida. Appl Environ Microbiol 2012; 78:6683-8. [PMID: 22798357 DOI: 10.1128/aem.01119-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia haemolytica, Pasteurella multocida, and Bibersteinia trehalosi have been identified in the lungs of pneumonic bighorn sheep (BHS; Ovis canadensis). Of these pathogens, M. haemolytica has been shown to consistently cause fatal pneumonia in BHS under experimental conditions. However, M. haemolytica has been isolated by culture less frequently than the other bacteria. We hypothesized that the growth of M. haemolytica is inhibited by other bacteria in the lungs of BHS. The objective of this study was to determine whether P. multocida inhibits the growth of M. haemolytica. Although in monoculture both bacteria exhibited similar growth characteristics, in coculture with P. multocida there was a clear inhibition of growth of M. haemolytica. The inhibition was detected at mid-log phase and continued through the stationary phase. When cultured in the same medium, the growth of M. haemolytica was inhibited when both bacteria were separated by a membrane that allowed contact (pore size, 8.0 μm) but not when they were separated by a membrane that limited contact (pore size, 0.4 μm). Lytic bacteriophages or bactericidal compounds could not be detected in the culture supernatant fluid from monocultures of P. multocida or from P. multocida-M. haemolytica cocultures. These results indicate that P. multocida inhibits the growth of M. haemolytica by a contact- or proximity-dependent mechanism. If the inhibition of growth of M. haemolytica by P. multocida occurs in vivo as well, it could explain the inconsistent isolation of M. haemolytica from the lungs of pneumonic BHS.
Collapse
|
8
|
Zehr ES, Lavrov DV, Tabatabai LB. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles. BMC Microbiol 2012; 12:108. [PMID: 22703293 PMCID: PMC3499290 DOI: 10.1186/1471-2180-12-108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression.
Collapse
Affiliation(s)
- Emilie S Zehr
- Ruminant Diseases and Immunology, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA.
| | | | | |
Collapse
|
9
|
Bibersteinia trehalosi inhibits the growth of Mannheimia haemolytica by a proximity-dependent mechanism. Appl Environ Microbiol 2009; 76:1008-13. [PMID: 20038698 DOI: 10.1128/aem.02086-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia (Pasteurella) haemolytica is the only pathogen that consistently causes severe bronchopneumonia and rapid death of bighorn sheep (BHS; Ovis canadensis) under experimental conditions. Paradoxically, Bibersteinia (Pasteurella) trehalosi and Pasteurella multocida have been isolated from BHS pneumonic lungs much more frequently than M. haemolytica. These observations suggest that there may be an interaction between these bacteria, and we hypothesized that B. trehalosi overgrows or otherwise inhibits the growth of M. haemolytica. Growth curves (monoculture) demonstrated that B. trehalosi has a shorter doubling time ( approximately 10 min versus approximately 27 min) and consistently achieves 3-log higher cell density (CFU/ml) compared to M. haemolytica. During coculture M. haemolytica growth was inhibited when B. trehalosi entered stationary phase (6 h) resulting in a final cell density for M. haemolytica that was 6 to 9 logs lower than expected with growth in the absence of B. trehalosi. Coculture supernatant failed to inhibit M. haemolytica growth on agar or in broth, indicating no obvious involvement of lytic phages, bacteriocins, or quorum-sensing systems. This observation was confirmed by limited growth inhibition of M. haemolytica when both pathogens were cultured in the same media but separated by a filter (0.4-microm pore size) that limited contact between the two bacterial populations. There was significant growth inhibition of M. haemolytica when the populations were separated by membranes with a pore size of 8 mum that allowed free contact. These observations demonstrate that B. trehalosi can both outgrow and inhibit M. haemolytica growth with the latter related to a proximity- or contact-dependent mechanism.
Collapse
|
10
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|