1
|
Gravato-Nobre M, Hodgkin J, Ligoxygakis P. From pathogen to a commensal: modification of the Microbacterium nematophilum-Caenorhabditis elegans interaction during chronic infection by the absence of host insulin signalling. Biol Open 2020; 9:bio053504. [PMID: 32580971 PMCID: PMC7561485 DOI: 10.1242/bio.053504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
The nematode worm Caenorhabditis elegans depends on microbes in decaying vegetation as its food source. To survive in an environment rich in opportunistic pathogens, Celegans has evolved an epithelial defence system where surface-exposed tissues such as epidermis, pharynx, intestine, vulva and hindgut have the capacity of eliciting appropriate immune defences to acute gut infection. However, it is unclear how the worm responds to chronic intestinal infections. To this end, we have surveyed Celegans mutants that are involved in inflammation, immunity and longevity to find their phenotypes during chronic infection. Worms that grew in a monoculture of the natural pathogen Microbacterium nematophilum (CBX102 strain) had a reduced lifespan and vigour. This was independent of intestinal colonisation as both CBX102 and the derived avirulent strain UV336 were early persistent colonisers. In contrast, the long-lived daf-2 mutant was resistant to chronic infection, showing reduced colonisation and higher vigour. In fact, UV336 interaction with daf-2 resulted in a host lifespan extension beyond OP50, the Escherichia coli strain used for laboratory Celegans culture. Longevity and vigour of daf-2 mutants growing on CBX102 was dependent on the FOXO orthologue DAF-16. Our results indicate that the interaction between host genotype and strain-specific bacteria determines longevity and health for C. elegans.
Collapse
Affiliation(s)
- Maria Gravato-Nobre
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Jonathan Hodgkin
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Cell Biology, Development and Genetics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| |
Collapse
|
2
|
Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Sci Rep 2019; 9:11477. [PMID: 31391531 PMCID: PMC6685954 DOI: 10.1038/s41598-019-47942-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/26/2019] [Indexed: 01/28/2023] Open
Abstract
Plant-parasitic nematodes are associated with specifically attached soil bacteria. To investigate these bacteria, we employed culture-dependent methods to isolate a representative set of strains from the cuticle of the infective stage (J2) of the root-knot nematode Meloidogyne hapla in different soils. The bacteria with the highest affinity to attach to J2 belonged to the genera Microbacterium, Sphingopyxis, Brevundimonas, Acinetobacter, and Micrococcus as revealed by 16S rRNA gene sequencing. Dynamics of the attachment of two strains showed fast adhesion in less than two hours, and interspecific competition for attachment sites. Isolates from the cuticle of M. hapla J2 attached to the lesion nematode Pratylenchus penetrans, and vice versa, suggesting similar attachment sites on both species. Removal of the surface coat by treatment of J2 with the cationic detergent CTAB reduced bacterial attachment, but did not prevent it. Some of the best attaching bacteria impaired M. hapla performance in vitro by significantly affecting J2 mortality, J2 motility and egg hatch. Most of the tested bacterial attachers significantly reduced the invasion of J2 into tomato roots, suggesting their beneficial role in soil suppressiveness against M. hapla.
Collapse
|
3
|
Anderson A, McMullan R. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0255. [PMID: 29866922 PMCID: PMC6000145 DOI: 10.1098/rstb.2017.0255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 01/24/2023] Open
Abstract
One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans. We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host–pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food. This article is part of the Theo Murphy meeting issue ‘Evolution of pathogen and parasite avoidance behaviours’.
Collapse
Affiliation(s)
- Alexandra Anderson
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rachel McMullan
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Buckinghamshire MK7 2AA, UK
| |
Collapse
|
4
|
Khan F, Jain S, Oloketuyi SF. Bacteria and bacterial products: Foe and friends to Caenorhabditis elegans. Microbiol Res 2018; 215:102-113. [DOI: 10.1016/j.micres.2018.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/11/2018] [Accepted: 06/24/2018] [Indexed: 02/07/2023]
|
5
|
Gene cloning system for sulfonamide-mineralizing Microbacterium sp. strain BR1. J Appl Genet 2018; 59:119-121. [PMID: 29372514 DOI: 10.1007/s13353-017-0427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 10/18/2022]
Abstract
The wide application of sulfonamide (SA) antibiotics in human and veterinary medicine contributes to the accumulation of these antibiotics in the environment and the corresponding onset of antibiotic resistance among bacteria. Microbacterium sp. BR1 is capable of mineralizing sulfamethoxazole and other SAs via a novel mechanism. The genetic basis of SA elimination by BR1 remains unknown. Development of an efficient plasmid transfer protocol for Microbacterium sp. BR1 is highly desirable, as it would open the door to genetic analysis and manipulation of its genome. Here we report that intergeneric Escherichia coli-Microbacterium spp. BR1 conjugation is an efficient way to introduce various plasmids into BR1. The generated transconjugants were stable in the presence of antibiotics and the plasmids showed no signs of rearrangements. Nevertheless, the plasmids were rapidly lost in the absence of selection. We also show that the cumate-inducible beta-glucuronidase reporter gene functions in BR1 and is strictly regulated. Our results set the working ground for further genetic manipulations of BR1, such as the overexpression of sulfonamide degradation genes or the selection of strong microbacterial promoters.
Collapse
|
6
|
Slos D, Sudhaus W, Stevens L, Bert W, Blaxter M. Caenorhabditis monodelphis sp. n.: defining the stem morphology and genomics of the genus Caenorhabditis. BMC ZOOL 2017. [DOI: 10.1186/s40850-017-0013-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Antunes CA, Clark L, Wanuske MT, Hacker E, Ott L, Simpson-Louredo L, de Luna MDG, Hirata R, Mattos-Guaraldi AL, Hodgkin J, Burkovski A. Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria. MICROBIOLOGY-SGM 2015; 162:84-93. [PMID: 26490043 DOI: 10.1099/mic.0.000201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caenorhabditis elegans is one of the major model systems in biology based on advantageous properties such as short life span, transparency, genetic tractability and ease of culture using an Escherichia coli diet. In its natural habitat, compost and rotting plant material, this nematode lives on bacteria. However, C. elegans is a predator of bacteria, but can also be infected by nematopathogenic coryneform bacteria such Microbacterium and Leucobacter species, which display intriguing and diverse modes of pathogenicity. Depending on the nematode pathogen, aggregates of worms, termed worm-stars, can be formed, or severe rectal swelling, so-called Dar formation, can be induced. Using the human and animal pathogens Corynebacterium diphtheriae and Corynebacterium ulcerans as well as the non-pathogenic species Corynebacterium glutamicum, we show that these coryneform bacteria can also induce star formation slowly in worms, as well as a severe tail-swelling phenotype. While C. glutamicum had a significant, but minor influence on survival of C. elegans, nematodes were killed after infection with C. diphtheriae and C. ulcerans. The two pathogenic species were avoided by the nematodes and induced aversive learning in C. elegans.
Collapse
Affiliation(s)
- Camila Azevedo Antunes
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, MG, Brazil.,Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro, RJ, Brazil
| | - Laura Clark
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Elena Hacker
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Ott
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Liliane Simpson-Louredo
- Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro, RJ, Brazil
| | | | - Raphael Hirata
- Faculty of Medical Sciences, Rio de Janeiro State University, UERJ, Rio de Janeiro, RJ, Brazil
| | | | | | - Andreas Burkovski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Pathogenicity and phenotypic analysis of sopB, sopD and pipD virulence factors in Salmonella enterica serovar typhimurium and Salmonella enterica serovar Agona. Antonie Van Leeuwenhoek 2014; 107:23-37. [DOI: 10.1007/s10482-014-0300-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
|
9
|
Hodgkin J, Clark LC, Gravato-Nobre MJ. Worm-stars and half-worms: Novel dangers and novel defense. WORM 2014; 3:e27939. [PMID: 25254146 PMCID: PMC4165538 DOI: 10.4161/worm.27939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of “worm-star” aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
Collapse
Affiliation(s)
| | - Laura C Clark
- Department of Biochemistry; University of Oxford; Oxford, UK
| | | |
Collapse
|
10
|
Parsons LM, Cipollo J. Oral ingestion of Microbacterium nematophilum leads to anal-region infection in Caenorhabditis elegans. Microbes Infect 2014; 16:356-61. [DOI: 10.1016/j.micinf.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
|
11
|
Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. PLoS Pathog 2013; 9:e1003787. [PMID: 24348250 PMCID: PMC3861540 DOI: 10.1371/journal.ppat.1003787] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/09/2013] [Indexed: 01/08/2023] Open
Abstract
The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food.
Collapse
|
12
|
Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ. Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol 2013; 23:2157-61. [PMID: 24206844 PMCID: PMC3898767 DOI: 10.1016/j.cub.2013.08.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023]
Abstract
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
13
|
Host-Microbe Interactions in Caenorhabditis elegans. ISRN MICROBIOLOGY 2013; 2013:356451. [PMID: 23984180 PMCID: PMC3747393 DOI: 10.1155/2013/356451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/16/2013] [Indexed: 01/09/2023]
Abstract
A good understanding of how microbes interact with hosts has a direct bearing on our capability of fighting infectious microbial pathogens and making good use of beneficial ones. Among the model organisms used to study reciprocal actions among microbes and hosts, C. elegans may be the most advantageous in the context of its unique attributes such as the short life cycle, easiness of laboratory maintenance, and the availability of different genetic mutants. This review summarizes the recent advances in understanding host-microbe interactions in C. elegans. Although these investigations have greatly enhanced our understanding of C. elegans-microbe relationships, all but one of them involve only one or few microbial species. We argue here that more research is needed for exploring the evolution and establishment of a complex microbial community in the worm's intestine and its interaction with the host.
Collapse
|
14
|
McMullan R, Anderson A, Nurrish S. Behavioral and immune responses to infection require Gαq- RhoA signaling in C. elegans. PLoS Pathog 2012; 8:e1002530. [PMID: 22359503 PMCID: PMC3280986 DOI: 10.1371/journal.ppat.1002530] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Following pathogen infection the hosts' nervous and immune systems react with coordinated responses to the danger. A key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gαq-RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gαq pathway within cholinergic motorneurons is necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by the Gαq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail swelling that limits the infection. These Gαq mediated behavioral and immune responses to infection are separate, act in a cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence of infection. Within the rectal epithelium the Gαq signaling pathway cooperates with a Ras signaling pathway to activate a Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gαq signaling triggers behavioral responses independent of Ras signaling. Thus, a conserved Gαq pathway cooperates with cell specific factors in the nervous and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled receptors are likely to be part of the signals generated in response to M. nematophilum infection. Once infected by a pathogen the nervous and immune systems of many animals react with coordinated responses to the danger. A key question is what are the pathways by which responses to infection occur and to what extent are the same pathways involved in differing responses? Here we demonstrate that a Gαq-RhoA pathway is required for both behavioral and immune responses to infection in C. elegans. We show that Gαq-RhoA signaling is a late step in the response to infection and their site of action defines the cellular targets of signals generated internally in response to infection. One response is to move away from sites of pathogenic bacteria and Gαq-RhoA signaling acts in motorneurons to achieve this. A second response is an innate immune response where Gαq-RhoA signaling acts within cells close to sites of infection, the rectal epithelial cells, to cause major changes in their size and shape to mitigate the effects of infection. Our work demonstrates that ligands for Gq coupled GPCRs are likely to be required for response to infection. Identifying these ligands and the cells that release them will help define the mechanisms by which C. elegans recognizes pathogens and coordinates behavioral and immune responses to infection.
Collapse
Affiliation(s)
- Rachel McMullan
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (RM); (SN)
| | - Alexandra Anderson
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- * E-mail: (RM); (SN)
| |
Collapse
|
15
|
Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics 2010; 185:211-20. [PMID: 20233857 DOI: 10.1534/genetics.109.112854] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp.
Collapse
|
16
|
Gravato-Nobre MJ, Hodgkin J. The acyltransferase gene bus-1 exhibits conserved and specific expression in nematode rectal cells and reveals pathogen-induced cell swelling. Dev Dyn 2009; 237:3762-76. [PMID: 19035336 DOI: 10.1002/dvdy.21792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Susceptibility to the rectal pathogen Microbacterium nematophilum provides a means of examining hindgut differentiation in C. elegans. Mutants of bus-1 are resistant to infection with this pathogen. We show here that bus-1 encodes a predicted acyltransferase expressed in rectal epithelial cells (K, F, and U), suggesting its involvement in regional surface modification. bus-1 reporter genes were used to show spatial regulation by hindgut developmental control genes: egl-38, mab-9, and mab-23. A bus-1::GFP reporter reveals the conspicuous rectal epithelial swelling induced by M. nematophilum. The C. briggsae ortholog of bus-1 exhibits conserved function and rectal expression, but it is expressed in vulval as well as rectal cells, correlated with pathogen adhesion to both vulval and rectal cells in this species. Another acyltransferase affecting bacterial adhesion, bus-18/acl-10, was also identified, which also shows strong rectal expression, but it is expressed in additional epithelial tissues and is required for general surface integrity.
Collapse
|
17
|
Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host-pathogen interaction. Appl Environ Microbiol 2008; 74:4185-98. [PMID: 18487405 DOI: 10.1128/aem.00381-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the pathogenic interaction between a newly described gram-positive bacterium, Leucobacter chromiireducens subsp. solipictus strain TAN 31504, and the nematode Caenorhabditis elegans. TAN 31504 pathogenesis on C. elegans is exerted primarily through infection of the adult nematode uterus. TAN 31504 enters the uterus through the external vulval opening, and the ensuing uterine infection is strongly correlated with a significant reduction in host life span. Young worms can feed and develop on TAN 31504, but not preferably over the standard food source. C. elegans worms reared on TAN 31504 as the sole food source develop into thin adults with little intestinal fat stores, produce few progeny, and subsequently cannot persist on the pathogenic food source. Within 12 h of exposure, adult worms challenged with TAN 31504 alter the expression of a number of C. elegans innate immunity-related genes, including nlp-29, which encodes a neuropeptide-like protein. C. elegans worms exposed briefly to TAN 31504 develop lethal uterine infections analogous to worms exposed continuously to pathogen, suggesting that mere contact with the pathogen is sufficient for the host to become infected. TAN 31504 produces a robust biofilm, and this behavior is speculated to play a role in the virulence exerted on the nematode host. The interaction between TAN 31504 and C. elegans provides a convenient opportunity to study bacterial virulence on nematode tissues other than the intestine and may allow for the discovery of host innate immunity elicited specifically in response to vulva-uterus infection.
Collapse
|
18
|
Schulenburg H, Hoeppner MP, Weiner J, Bornberg-Bauer E. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 2008; 213:237-50. [PMID: 18406370 DOI: 10.1016/j.imbio.2007.12.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/25/2007] [Accepted: 12/10/2007] [Indexed: 01/30/2023]
Abstract
The nematode Caenorhabditis elegans has become an important model for the study of innate immunity. Its immune system is based on several signaling cascades, including a Toll-like receptor, three mitogen-activated protein kinases (MAPK), one transforming growth factor-beta (TGF-beta), the insulin-like receptor (ILR), and the programmed cell death (PCD) pathway. Furthermore, it also involves C-type lectin domain- (CTLD) containing proteins as well as several classes of antimicrobial effectors such as lysozymes. Almost all components of the nematode immune system have homologs in other organisms, including humans, and are therefore likely of ancient evolutionary origin. At the same time, most of them are part of a general stress response, suggesting that they only provide unspecific defense. In the current article, we re-evaluate this suggestion and explore the level of specificity in C. elegans innate immunity, i.e. the nematode's ability to mount a distinct defense response towards different pathogens. We draw particular attention to the CTLD proteins, which are abundant in the nematode genome (278 genes) and many of which show a pathogen-specific response during infection. Specificity may also be achieved through the differential activation of antimicrobial genes, distinct functions of the immunity signaling cascades as well as signal integration across pathways. Taken together, our evaluation reveals high potential for immune specificity in C. elegans that may enhance the nematode's ability to fight off pathogens.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Department of Animal Evolutionary Ecology, Zoological Institute, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
19
|
Akimkina T, Venien-Bryan C, Hodgkin J. Isolation, characterization and complete nucleotide sequence of a novel temperate bacteriophage Min1, isolated from the nematode pathogen Microbacterium nematophilum. Res Microbiol 2007; 158:582-90. [PMID: 17869067 DOI: 10.1016/j.resmic.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/25/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
We report the discovery, properties and complete sequence (46,365bp) of Min1, the first bacteriophage to be reported for the coryneform genus Microbacterium. This temperate phage is normally integrated into a stable plasmid, pMN1, found in cells of Microbacterium nematophilum, a pathogen of certain soil nematodes including Caenorhabditis elegans, but it can also grow lytically. The phage is lambdoid in morphology and in sequence, belonging to the family Siphoviridae. General and specific features of the genome are discussed, together with possible contributions of the phage to host virulence.
Collapse
Affiliation(s)
- Tatiana Akimkina
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | |
Collapse
|