1
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
2
|
Román-Écija M, Navas-Cortés JA, Velasco-Amo MP, Arias-Giraldo LF, Gómez LM, Fuente LDL, Landa BB. Two Xylella fastidiosa subsp. multiplex Strains Isolated from Almond in Spain Differ in Plasmid Content and Virulence Traits. PHYTOPATHOLOGY 2023; 113:960-974. [PMID: 36576402 DOI: 10.1094/phyto-06-22-0234-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is a major threat to agriculture and the environment worldwide. Recent devastating outbreaks in Europe highlight the potential of this pathogen to cause emergent diseases. X. fastidiosa subsp. multiplex ESVL and IVIA5901 strains that belong to sequence type 6 were isolated from almond orchards within the outbreak area in Alicante province (Spain). Both strains share more than 99% of the chromosomal sequences (average nucleotide identity), but the ESVL strain harbors two plasmids (pXF64-Hb_ESVL and pUCLA-ESVL). Here, virulence phenotypes and genome content were compared between both strains, using three strains from the United States as a reference for the phenotypic analyses. Experiments in microfluidic chambers, used as a simulation of xylem vessels, showed that twitching motility was absent in the IVIA5901 strain, whereas the ESVL strain had reduced twitching motility. In general, both Spanish strains had less biofilm formation, less cell aggregation, and lower virulence in tobacco compared with U.S. reference strains. Genome analysis of the two plasmids from ESVL revealed 51 unique coding sequences that were absent in the chromosome of IVIA5901. Comparison of the chromosomes of both strains showed some unique coding sequences and single-nucleotide polymorphisms in each strain, with potential deleterious mutations. Genomic differences found in genes previously associated with adhesion and motility might explain the differences in the phenotypic traits studied. Although additional studies are necessary to infer the potential role of X. fastidiosa plasmids, our results indicate that the presence of plasmids should be considered in the study of the mechanisms of pathogenicity and adaptation in X. fastidiosa to new environments. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - J A Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M P Velasco-Amo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L F Arias-Giraldo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L M Gómez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - L De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - B B Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
3
|
Ge Q, Zhu X, Cobine PA, De La Fuente L. The Copper-Binding Protein CutC Is Involved in Copper Homeostasis and Affects Virulence in the Xylem-Limited Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2022; 112:1620-1629. [PMID: 35196066 DOI: 10.1094/phyto-11-21-0488-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is an essential element that can be toxic if homeostasis is disrupted. Xylella fastidiosa, a xylem-limited plant pathogenic bacterium that causes disease in many economically important crops worldwide, has been exposed to Cu stress caused by wide application of Cu-containing antimicrobials used to control other diseases. However, X. fastidiosa Cu homeostasis mechanisms are still poorly understood. The potentially Cu-related protein CutC, which is involved in Cu tolerance in Escherichia coli and humans, has not been analyzed functionally in plant pathogenic bacteria. We demonstrate that recombinantly expressed X. fastidiosa CutC binds Cu and deletion of cutC gene (PD0586) in X. fastidiosa showed increased sensitivity to Cu-shock compared with wild type (WT) strain TemeculaL. When infecting plants in the greenhouse, cutC mutant showed decreased disease incidence and severity compared with WT but adding Cu exaggerated severity. Interestingly, the inoculation of cutC mutant caused reduced symptoms in the acropetal regions of plants. We hypothesize that X. fastidiosa cutC is involved in Cu homeostasis by binding Cu in cells, leading to Cu detoxification, which is crucial to withstand Cu-shock stress. Unveiling the role of cutC gene in X. fastidiosa facilitates further understanding of Cu homeostasis in bacterial pathogens.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
4
|
Merfa MV, Niza B, Takita MA, De Souza AA. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Front Microbiol 2016; 7:904. [PMID: 27375608 PMCID: PMC4901048 DOI: 10.3389/fmicb.2016.00904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Bárbara Niza
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Marco A. Takita
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
| | | |
Collapse
|
5
|
Cursino L, Li Y, Zaini PA, De La Fuente L, Hoch HC, Burr TJ. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiol Lett 2009; 299:193-9. [PMID: 19735464 DOI: 10.1111/j.1574-6968.2009.01747.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | |
Collapse
|
6
|
Zaini PA, De La Fuente L, Hoch HC, Burr TJ. Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiol Lett 2009; 295:129-34. [PMID: 19473259 DOI: 10.1111/j.1574-6968.2009.01597.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Xylella fastidiosa is able to form biofilms within xylem vessels of many economically important crops. Vessel blockage is believed to be a major contributor to disease development caused by this bacterium. This report shows that Vitis riparia xylem sap increases growth rate and induces a characteristic biofilm architecture as compared with biofilms formed in PD2 and PW media. In addition, stable cultures could be maintained, frozen and reestablished in xylem sap. These findings are important as xylem sap provides a natural medium that facilitates the identification of virulence determinants of Pierce's disease.
Collapse
Affiliation(s)
- Paulo A Zaini
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
7
|
Abstract
Twitching motility is a form of bacterial translocation over solid or semi-solid surfaces mediated by the extension, tethering, and subsequent retraction of type IV pili. These pili are also known to be involved in virulence, biofilm formation, formation of fruiting bodies, horizontal gene transfer, and protein secretion. We have characterized the presence of twitching motility on agar plates in Legionella pneumophila, the etiological agent of Legionnaires' disease. By examining twitching motility zones, we have demonstrated that twitching motility was dependent on agar thickness/concentration, the chemical composition of the media, the presence of charcoal and cysteine, proximity to other bacteria, and temperature. A knockout mutant of the pilus subunit, pilE, exhibited a total loss of twitching motility at 37 degrees C, but not at 27 degrees C, suggesting either the existence of a compensating pilus subunit or of another twitching motility system in this organism.
Collapse
Affiliation(s)
- David A Coil
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|