1
|
Kędzierska-Mieszkowska S. Sigma factors of RNA polymerase in the pathogenic spirochaete Leptospira interrogans, the causative agent of leptospirosis. FASEB J 2023; 37:e23163. [PMID: 37688587 DOI: 10.1096/fj.202300252rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
The aim of this review is to summarize the current knowledge on the role of σ factors in a highly invasive spirochaete Leptospira interrogans responsible for leptospirosis that affects many mammals, including humans. This disease has a significant impact on public health and the economy worldwide. In bacteria, σ factors are the key regulators of gene expression at the transcriptional level and therefore play an important role in bacterial adaptative response to different environmental stimuli. These factors form a holoenzyme with the RNA polymerase core enzyme and then direct it to specific promoters, which results in turning on selected genes. Most bacteria possess several different σ factors that enable them to maintain basal gene expression, as well as to regulate gene expression in response to specific environmental signals. Recent comparative genomics and in silico genome-wide analyses have revealed that the L. interrogans genome, consisting of two circular chromosomes, encodes a total of 14 σ factors. Among them, there is one putative housekeeping σ70 -like factor, and three types of alternative σ factors, i.e., one σ54 , one σ28 and 11 putative ECF (extracytoplasmic function) σE -type factors. Here, characteristics of these putative σ factors and their possible role in the L. interrogans gene regulation (especially in this pathogen's adaptive response to various environmental conditions, an important determinant of leptospiral virulence), are presented.
Collapse
|
2
|
Kühn MJ, Edelmann DB, Thormann KM. Polar flagellar wrapping and lateral flagella jointly contribute to Shewanella putrefaciens environmental spreading. Environ Microbiol 2022; 24:5911-5923. [PMID: 35722744 DOI: 10.1111/1462-2920.16107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/12/2023]
Abstract
Flagella enable bacteria to actively spread within the environment. A number of species possess two separate flagellar systems, where in most cases a primary polar flagellar system is supported by distinct secondary lateral flagella under appropriate conditions. Using functional fluorescence tagging on one of these species, Shewanella putrefaciens, as a model system, we explored how two different flagellar systems can exhibit efficient joint function. The S. putrefaciens secondary flagellar filaments are composed as a mixture of two highly homologous non-glycosylated flagellins, FlaA2 and FlaB2 . Both are solely sufficient to form a functional filament, however, full spreading motility through soft agar requires both flagellins. During swimming, lateral flagella emerge from the cell surface at angles between 30° and 50°, and only filaments located close to the cell pole may form a bundle. Upon a directional shift from forward to backward swimming initiated by the main polar flagellum, the secondary filaments flip over and thus support propulsion into either direction. Lateral flagella do not inhibit the wrapping of the polar flagellum around the cell body at high load. Accordingly, screw thread-like motility mediated by the primary flagellum and activity of lateral flagella cumulatively supports spreading through constricted environments such as polysaccharide matrices.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany.,Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel B Edelmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
3
|
Nijo T, Neriya Y, Koinuma H, Iwabuchi N, Kitazawa Y, Tanno K, Okano Y, Maejima K, Yamaji Y, Oshima K, Namba S. Genome-Wide Analysis of the Transcription Start Sites and Promoter Motifs of Phytoplasmas. DNA Cell Biol 2017; 36:1081-1092. [PMID: 29039971 DOI: 10.1089/dna.2016.3616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phytoplasmas are obligate intracellular parasitic bacteria that infect both plants and insects. We previously identified the sigma factor RpoD-dependent consensus promoter sequence of phytoplasma. However, the genome-wide landscape of RNA transcripts, including non-coding RNAs (ncRNAs) and RpoD-independent promoter elements, was still unknown. In this study, we performed an improved RNA sequencing analysis for genome-wide identification of the transcription start sites (TSSs) and the consensus promoter sequences. We constructed cDNA libraries using a random adenine/thymine hexamer primer, in addition to a conventional random hexamer primer, for efficient sequencing of 5'-termini of AT-rich phytoplasma RNAs. We identified 231 TSSs, which were classified into four categories: mRNA TSSs, internal sense TSSs, antisense TSSs (asTSSs), and orphan TSSs (oTSSs). The presence of asTSSs and oTSSs indicated the genome-wide transcription of ncRNAs, which might act as regulatory ncRNAs in phytoplasmas. This is the first description of genome-wide phytoplasma ncRNAs. Using a de novo motif discovery program, we identified two consensus motif sequences located upstream of the TSSs. While one was almost identical to the RpoD-dependent consensus promoter sequence, the other was an unidentified novel motif, which might be recognized by another transcription initiation factor. These findings are valuable for understanding the regulatory mechanism of phytoplasma gene expression.
Collapse
Affiliation(s)
- Takamichi Nijo
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yutaro Neriya
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Hiroaki Koinuma
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Nozomu Iwabuchi
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yugo Kitazawa
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kazuyuki Tanno
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yukari Okano
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kensaku Maejima
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Yasuyuki Yamaji
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| | - Kenro Oshima
- 2 Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University , Tokyo, Japan
| | - Shigetou Namba
- 1 Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
4
|
Shahmuradov IA, Mohamad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics 2017; 33:334-340. [PMID: 27694198 PMCID: PMC5408793 DOI: 10.1093/bioinformatics/btw629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Motivation The computational search for promoters in prokaryotes remains an attractive problem in bioinformatics. Despite the attention it has received for many years, the problem has not been addressed satisfactorily. In any bacterial genome, the transcription start site is chosen mostly by the sigma (σ) factor proteins, which control the gene activation. The majority of published bacterial promoter prediction tools target σ70 promoters in Escherichia coli. Moreover, no σ-specific classification of promoters is available for prokaryotes other than for E. coli. Results Here, we introduce bTSSfinder, a novel tool that predicts putative promoters for five classes of σ factors in Cyanobacteria (σA, σC, σH, σG and σF) and for five classes of sigma factors in E. coli (σ70, σ38, σ32, σ28 and σ24). Comparing to currently available tools, bTSSfinder achieves higher accuracy (MCC = 0.86, F1-score = 0.93) compared to the next best tool with MCC = 0.59, F1-score = 0.79) and covers multiple classes of promoters. Availability and Implementation bTSSfinder is available standalone and online at http://www.cbrc.kaust.edu.sa/btssfinder. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ilham Ayub Shahmuradov
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Rozaimi Mohamad Razali
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
de Avila e Silva S, Forte F, T S Sartor I, Andrighetti T, J L Gerhardt G, Longaray Delamare AP, Echeverrigaray S. DNA duplex stability as discriminative characteristic for Escherichia coli σ(54)- and σ(28)- dependent promoter sequences. Biologicals 2013; 42:22-8. [PMID: 24172230 DOI: 10.1016/j.biologicals.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022] Open
Abstract
The advent of modern high-throughput sequencing has made it possible to generate vast quantities of genomic sequence data. However, the processing of this volume of information, including prediction of gene-coding and regulatory sequences remains an important bottleneck in bioinformatics research. In this work, we integrated DNA duplex stability into the repertoire of a Neural Network (NN) capable of predicting promoter regions with augmented accuracy, specificity and sensitivity. We took our method beyond a simplistic analysis based on a single sigma subunit of RNA polymerase, incorporating the six main sigma-subunits of Escherichia coli. This methodology employed successfully re-discovered known promoter sequences recognized by E. coli RNA polymerase subunits σ(24), σ(28), σ(32), σ(38), σ(54) and σ(70), with highlighted accuracies for σ(28)- and σ(54)- dependent promoter sequences (values obtained were 80% and 78.8%, respectively). Furthermore, the discrimination of promoters according to the σ factor made it possible to extract functional commonalities for the genes expressed by each type of promoter. The DNA duplex stability rises as a distinctive feature which improves the recognition and classification of σ(28)- and σ(54)- dependent promoter sequences. The findings presented in this report underscore the usefulness of including DNA biophysical parameters into NN learning algorithms to increase accuracy, specificity and sensitivity in promoter beyond what is accomplished based on sequence alone.
Collapse
Affiliation(s)
- Scheila de Avila e Silva
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Franciele Forte
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Ivaine T S Sartor
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Tahila Andrighetti
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Günther J L Gerhardt
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Ana Paula Longaray Delamare
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| | - Sergio Echeverrigaray
- Universidade de Caxias do Sul, Instituto de Biotecnologia, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
6
|
Albrecht M, Sharma CM, Dittrich MT, Müller T, Reinhardt R, Vogel J, Rudel T. The transcriptional landscape of Chlamydia pneumoniae. Genome Biol 2011; 12:R98. [PMID: 21989159 PMCID: PMC3333780 DOI: 10.1186/gb-2011-12-10-r98] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 02/07/2023] Open
Abstract
Background Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Results Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for co-transcription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. Conclusions The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen.
Collapse
Affiliation(s)
- Marco Albrecht
- Department of Microbiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, 97074, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
de Avila e Silva S, Echeverrigaray S, Gerhardt GJ. BacPP: Bacterial promoter prediction—A tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol 2011; 287:92-9. [DOI: 10.1016/j.jtbi.2011.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/20/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
8
|
Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PLoS One 2011; 6:e21479. [PMID: 21731763 PMCID: PMC3120886 DOI: 10.1371/journal.pone.0021479] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/02/2011] [Indexed: 01/17/2023] Open
Abstract
Shewanella oneidensis is a highly motile organism by virtue of a polar flagellum. Unlike most flagellated bacteria, it contains only one major chromosome segment encoding the components of the flagellum with the exception of the motor proteins. In this region, three genes encode flagellinsaccording to the original genome annotation. However, we find that only flaA and flaB encode functional filament subunits. Although these two genesare under the control of different promoters, they are actively transcribed and subsequently translated, producing a considerable number of flagellin proteins. Additionally, both flagellins are able to interact with their chaperon FliS and are subjected to feedback regulation. Furthermore, FlaA and FlaB are glycosylated by a pathwayinvolving a major glycosylating enzyme,PseB, in spite of the lack of the majority of theconsensus glycosylation sites. In conclusion, flagellar assembly in S. oneidensis has novel features despite the conservation of homologous genes across taxa.
Collapse
|
9
|
Song W, Juhn FS, Naiman DQ, Konstantinidis KT, Gardner TS, Ward MJ. Predicting sigma28 promoters in eleven Shewanella genomes. FEMS Microbiol Lett 2008; 283:223-30. [PMID: 18430000 DOI: 10.1111/j.1574-6968.2008.01175.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An iterative position-specific score matrix (PSSM)-based approach was used to predict sigma(28) promoters in 11 Shewanella genomes. The Shewanella Correlation Browser was used to distinguish true-positive predictions from false-positive predictions in Shewanella oneidensis MR-1 by generating a sigma(28)-regulated transcriptional network from transcriptional profiling data. This dual-pronged approach identified several genes that have sigma(28) promoters and that may be involved with motility or chemotaxis in Shewanella.
Collapse
Affiliation(s)
- Wenjie Song
- Department of Geography and Environmental Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|