1
|
Yoshihara R, Shimakura Y, Kitamura S, Satoh K, Sato M, Aono T, Akiyama Y, Hatakeyama S, Tanaka S. A mutation in DNA polymerase γ harbors a shortened lifespan and high sensitivity to mutagens in the filamentous fungus Neurospora crassa. Genetics 2025; 229:iyae201. [PMID: 39611774 DOI: 10.1093/genetics/iyae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N. crassa that ceases hyphal elongation early was screened and analyzed to better understand the mechanisms for maintaining hyphal elongation in filamentous fungi. The mutant strain also exhibited high sensitivity to mutagens such as hydroxyurea and ultraviolet radiation. Based on these observations, we named the novel mutant "mutagen sensitive and short lifespan 1 (ms1)." The mutation responsible for the short lifespan and mutagen sensitivity in the ms1 strain was identified in DNA polymerase γ (mip-1:NCU00276). This mutation changed the amino acid at position 814 in the polymerase domain from leucine to arginine (MIP-1 L814R). A dosage analysis by next-generation sequencing reads suggested that mitochondrial DNA (mtDNA) sequences are decreased nonuniformly throughout the genome of the ms1 strain. This observation was confirmed by quantitative PCR for 3 representative loci and restriction fragment length polymorphisms in purified mtDNA. Direct repeat-mediated deletions, which had been reported previously, were not detected in the mitochondrial genome by our whole-genome sequencing analysis. These results imply the presence of novel mechanisms to induce the nonuniform decrease in the mitochondrial genome by DNA polymerase γ mutation. Some potential reasons for the nonuniform distribution of the mitochondrial genome are discussed in relation to the molecular functions of DNA polymerase γ.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yuzuki Shimakura
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Satoshi Kitamura
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Katsuya Satoh
- Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki 370-1292, Japan
| | - Manami Sato
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Taketo Aono
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Yu Akiyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shin Hatakeyama
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Shuuitsu Tanaka
- Graduate School of Science & Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| |
Collapse
|
2
|
Shu L, Zeng Z, Chen M, Zhao J, Zhang X, Dai J, Cai Z, Lu Y, Qiu Z, Zeng H. Comparative Transcriptomic Analysis Reveals New Insights into Spawn Aging in Agaricus bisporus: Mitochondrial Dysfunction. Int J Mol Sci 2025; 26:849. [PMID: 39859563 PMCID: PMC11766156 DOI: 10.3390/ijms26020849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Spawn aging poses a substantial challenge to the Agaricus bisporus industry. This study focuses on the role of mitochondrial dysfunction in the aging process of A. bisporus spawn. We conducted a comprehensive comparative transcriptome analysis to elucidate the molecular mechanisms underlying A. bisporus spawn aging. A total of 1620 genes with significant expression changes between the normal and aged spawn were identified, including 917 up-regulated genes and 703 down-regulated genes. Our results revealed a notable down-regulation of genes involved in carbohydrate metabolism, mitochondrial energy metabolism, reactive oxygen species (ROS) scavenging, repair mechanisms for oxidative stress-induced damage, fatty acid β-oxidation, and amino acid degradation in aged A. bisporus spawn. Additionally, we observed a decreased expression of genes involved in critical signal transduction pathways associated with mitochondrial function in aged mycelium as well as genes responsible for maintaining mitochondrial stability. The up-regulated genes in aged spawn mainly affect mitochondrial fission and programmed cell death, impacting mitochondrial function. Overall, the present study first provides evidence for the pivotal role of mitochondrial dysfunction in the aging process of A. bisporus spawn and contributes to the development of targeted strategies to enhance mitochondrial function, mitigate spawn aging, and improve the yield and quality of A. bisporus cultivation.
Collapse
Affiliation(s)
- Lili Shu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (X.Z.)
| | - Zhiheng Zeng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (X.Z.)
| | - Meiyuan Chen
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
| | - Jiazhi Zhao
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (X.Z.)
| | - Xiaoyan Zhang
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (X.Z.)
| | - Jianqing Dai
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
| | - Zhixin Cai
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
| | - Yuanping Lu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
| | - Zhiheng Qiu
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
- Modern Protected Horticulture Engineering & Technology Center, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.Z.); (X.Z.)
| | - Hui Zeng
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, National-Local Joint Engineering Research Center for Breeding and Cultivation of Featured Edible Mushroom, Fuzhou 350011, China; (L.S.); (Z.Z.); (M.C.); (J.D.); (Z.C.); (Y.L.)
| |
Collapse
|
3
|
Zalesky T, Bradshaw AJ, Bair ZJ, Meyer KW, Stamets P. Fungal cryopreservation across 61 genera: Practical application and method evaluation. Mycologia 2024; 116:865-876. [PMID: 38949868 DOI: 10.1080/00275514.2024.2363135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Fungi occupy important environmental, cultural, and socioeconomic roles. However, biological research of this diverse kingdom has lagged behind that of other phylogenetic groups. This is partially the result of the notorious difficulty in culturing a diverse array of filamentous fungal species due to their (i) often unpredictable growth, (ii) unknown preferences for culturing conditions, and (iii) long incubation times compared with other microorganisms such as bacteria and yeasts. Given the complexity associated with concurrently culturing diverse fungal species, developing practical methods for preserving as many species as possible for future research is vital. The widely accepted best practice for preserving fungal tissue is the use of cryogenic biobanking at -165 C, allowing for the preservation and documentation of stable genetic lineages, thus enabling long-term diversity-centered research. Despite the extensive literature on fungal cryopreservation, substantial barriers remain for implementation of cryogenic biobanks in smaller mycological laboratories. In this work, we present practical considerations for the establishment of a fungal culture biobank, as well as provide evidence for the viability of 61 fungal genera in cryogenic storage. By providing a pragmatic methodology for cryogenically preserving and managing many filamentous fungi, we show that creating a biobank can be economical for independently owned and operated mycology laboratories, which can serve as a long-term resource for biodiversity, conservation, and strain maintenance.
Collapse
Affiliation(s)
- Travis Zalesky
- School of Geography, Development and Environment, University of Arizona, 1200 E University Boulevard, Tucson, Arizona 85721
| | - Alexander J Bradshaw
- School of Biological Sciences, University of Utah, 201 Presidents Circle, Salt Lake City, Utah 84112
| | | | | | | |
Collapse
|
4
|
Jaccard A, Dubuis N, Kellenberger I, Brodard J, Schnee S, Gindro K, Schumpp O. New viruses of Cladosporium sp. expand considerably the taxonomic structure of Gammapartitivirus genus. J Gen Virol 2023; 104:001879. [PMID: 37549001 PMCID: PMC10539651 DOI: 10.1099/jgv.0.001879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Despite the fact that Cladosporium sp. are ubiquitous fungi, their viromes have been little studied. By analysing a collection of Cladosporium fungi, two new partitiviruses named Cladosporium cladosporioides partitivirus 1 (CcPV1) and Cladosporium cladosporioides partitivirus 2 (CcPV2) co-infecting a strain of Cladosporium cladosporioides were identified. Their complete genome consists of two monocistronic dsRNA segments (RNA1 and RNA2) with a high percentage of pairwise identity on 5' and 3' end. The RNA directed RNA polymerase (RdRp) of both viruses and the capsid protein (CP) of CcPV1 display the classic characteristics required for their assignment to the Gammapartitivirus genus. In contrast, CcPV2 RNA2 encodes for a 41 KDa CP that is unusually smaller when aligned to CPs of other viruses classified in this genus. The structural role of this protein is confirmed by electrophoresis on acrylamide gel of purified viral particles. Despite the low percentage of identity between the capsid proteins of CcPV1 and CcPV2, their three-dimensional structures predicted by AlphaFold2 show strong similarities and confirm functional proximity. Fifteen similar viral sequences of unknown function were annotated using the CcPV2 CP sequence. The phylogeny of the CP was highly consistent with the phylogeny of their corresponding RdRp, supporting the organization of Gammapartitiviruses into three distinct clades despite stretching the current demarcation criteria. It is proposed that a new subgenus be created within the genus Gammapartitivirus for this new group.
Collapse
Affiliation(s)
| | - Nathalie Dubuis
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | | | - Justine Brodard
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Sylvain Schnee
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Katia Gindro
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| | - Olivier Schumpp
- Department of Plant Protection, Agroscope, Nyon, Switzerland
| |
Collapse
|
5
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
6
|
Koritala BSC, Lee K. Natural Variation of the Circadian Clock in Neurospora. ADVANCES IN GENETICS 2017; 99:1-37. [PMID: 29050553 DOI: 10.1016/bs.adgen.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.
Collapse
Affiliation(s)
- Bala S C Koritala
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States.
| |
Collapse
|
7
|
Phenotypic analysis of newly isolated short-lifespan Neurospora crassa mutant deficient in a high mobility group box protein. Fungal Genet Biol 2017; 105:28-36. [DOI: 10.1016/j.fgb.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022]
|
8
|
Ma L, Song B, Curran T, Phong N, Dressaire E, Roper M. Defining individual size in the model filamentous fungus Neurospora crassa. Proc Biol Sci 2016; 283:20152470. [PMID: 26962146 DOI: 10.1098/rspb.2015.2470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It is challenging to apply the tenets of individuality to filamentous fungi: a fungal mycelium can contain millions of genetically diverse but totipotent nuclei, each capable of founding new mycelia. Moreover, a single mycelium can potentially stretch over kilometres, and it is unlikely that its distant parts share resources or have the same fitness. Here, we directly measure how a single mycelium of the model ascomycete Neurospora crassa is patterned into reproductive units (RUs), meaning subpopulations of nuclei that propagate together as spores, and function as reproductive individuals. The density of RUs is sensitive to the geometry of growth; we detected 50-fold smaller RUs when mycelia had expanding frontiers than when they were constrained to grow in one direction only. RUs fragmented further when the mycelial network was perturbed. In mycelia with expanding frontiers, RU composition was strongly influenced by the distribution of genotypes early in development. Our results provide a concept of fungal individuality that is directly connected to reproductive potential, and therefore to theories of how fungal individuals adapt and evolve over time. Our data show that the size of reproductive individuals is a dynamic and environment-dependent property, even within apparently totally connected fungal mycelia.
Collapse
Affiliation(s)
- Linda Ma
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA
| | - Boya Song
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA
| | - Thomas Curran
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA
| | - Nhu Phong
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA
| | - Emilie Dressaire
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Marcus Roper
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA Department of Biomathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, USA
| |
Collapse
|
9
|
He P, Cai Y, Liu S, Han L, Huang L, Liu W. Morphological and ultrastructural examination of senescence in Morchella elata. Micron 2015; 78:79-84. [DOI: 10.1016/j.micron.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
|
10
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Fungal Cultivation and Production of Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_21-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Abstract
A fungal colony is a syncytium composed of a branched and interconnected network of cells. Chimerism endows colonies with increased virulence and ability to exploit nutritionally complex substrates. Moreover, chimera formation may be a driver for diversification at the species level by allowing lateral gene transfer between strains that are too distantly related to hybridize sexually. However, the processes by which genomic diversity develops and is maintained within a single colony are little understood. In particular, both theory and experiments show that genetically diverse colonies may be unstable and spontaneously segregate into genetically homogenous sectors. By directly measuring patterns of nuclear movement in the model ascomycete fungus Neurospora crassa, we show that genetic diversity is maintained by complex mixing flows of nuclei at all length scales within the hyphal network. Mathematical modeling and experiments in a morphological mutant reveal some of the exquisite hydraulic engineering necessary to create the mixing flows. In addition to illuminating multinucleate and multigenomic lifestyles, the adaptation of a hyphal network for mixing nuclear material provides a previously unexamined organizing principle for understanding morphological diversity in the more-than-a-million species of filamentous fungi.
Collapse
|
14
|
Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva RDN, Ulhoa CJ. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 2013; 14:177. [PMID: 23497274 PMCID: PMC3606605 DOI: 10.1186/1471-2164-14-177] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 03/06/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani. RESULTS Data obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established. CONCLUSIONS This study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent.
Collapse
Affiliation(s)
- Pabline Marinho Vieira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131, Goiânia, GO CEP 74001-970, Brazil
| | | | - Andrei Stecca Steindorff
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131, Goiânia, GO CEP 74001-970, Brazil
| | - Saulo José Linhares de Siqueira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131, Goiânia, GO CEP 74001-970, Brazil
| | - Roberto do Nascimento Silva
- Departamento de Bioquímica e Imunologia, Escola de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Cirano José Ulhoa
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, P.O. Box 131, Goiânia, GO CEP 74001-970, Brazil
| |
Collapse
|
15
|
Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO, Payne G, Andrianopoulos A, Denning DW, Nierman WC. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics 2012; 13:698. [PMID: 23234273 PMCID: PMC3562157 DOI: 10.1186/1471-2164-13-698] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/29/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. RESULTS Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. CONCLUSIONS The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population studies. Despite the conservation of the core genes, the mitochondrial genomes of Aspergillus and Penicillium species examined here exhibit significant amount of interspecies variation. Most of this variation can be attributed to accessory genes and mobile introns, presumably acquired by horizontal gene transfer of mitochondrial plasmids and intron homing.
Collapse
Affiliation(s)
- Vinita Joardar
- The J. Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
A uvs-5 strain is deficient for a mitofusin gene homologue, fzo1, involved in maintenance of long life span in Neurospora crassa. EUKARYOTIC CELL 2012; 12:233-43. [PMID: 23223037 DOI: 10.1128/ec.00226-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are highly dynamic organelles that continuously fuse and divide. To maintain mitochondria, cells establish an equilibrium of fusion and fission events, which are mediated by dynamin-like GTPases. We previously showed that an mus-10 strain, a mutagen-sensitive strain of the filamentous fungus Neurospora crassa, is defective in an F-box protein that is essential for the maintenance of mitochondrial DNA (mtDNA), long life span, and mitochondrial morphology. Similarly, a uvs-5 mutant accumulates deletions within its mtDNA, has a shortened life span, and harbors fragmented mitochondria, the latter of which is indicative of an imbalance between mitochondrial fission and fusion. Since the uvs-5 mutation maps very close to the locus of fzo1, encoding a mitofusin homologue thought to mediate mitochondrial outer membrane fusion, we determined the sequence of the fzo1 gene in the uvs-5 mutant. A single amino acid substitution (Q368R) was found in the GTPase domain of the FZO1 protein. Expression of wild-type FZO1 in the uvs-5 strain rescued the mutant phenotypes, while expression of a mutant FZO1 protein did not. Moreover, when knock-in of the Q368R mutation was performed on a wild-type strain, the resulting mutant displayed phenotypes identical to those of the uvs-5 mutant. Therefore, we concluded that the previously unidentified uvs-5 gene is fzo1. Furthermore, we used immunoprecipitation analysis to show that the FZO1 protein interacts with MUS-10, which suggests that these two proteins may function together to maintain mitochondrial morphology.
Collapse
|
17
|
Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa. Genetics 2012; 192:467-82. [PMID: 22813893 PMCID: PMC3454877 DOI: 10.1534/genetics.112.142612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Kinase cascades and the modification of proteins by phosphorylation are major mechanisms for cell signaling and communication, and evolution of these signaling pathways can contribute to new developmental or environmental response pathways. The Saccharomyces cerevisiae kinase Ime2 has been well characterized for its role in meiosis. However, recent studies have revealed alternative functions for Ime2 in both S. cerevisiae and other fungi. In the filamentous fungus Neurospora crassa, the IME2 homolog (ime-2) is not required for meiosis. Here we determine that ime-2 interacts genetically with a transcription factor vib-1 during nonself recognition and programmed cell death (PCD). Mutations in vib-1 (Δvib-1) suppress PCD due to nonself recognition events; however, a Δvib-1 Δime-2 mutant restored wild-type levels of cell death. A role for ime-2 in the post-translational processing and localization of a mitochondrial matrix protein was identified, which may implicate mitochondria in N. crassa nonself recognition and PCD. Further, Δvib-1 strains do not produce extracellular proteases, but protease secretion reverted to near wild-type levels in a Δvib-1 Δime-2 strain. Mass spectrometry analysis revealed that the VIB-1 protein is phosphorylated at several sites, including a site that matches the IME-2 consensus. The genetic and biochemical data for ime-2 and vib-1 indicate that IME-2 is a negative regulator of VIB-1 and suggest parallel negative regulation by IME-2 of a cell death pathway in N. crassa that functions in concert with the VIB-1 cell death pathway. Thus, IME2 kinase function has evolved following the divergence of S. cerevisiae and N. crassa and provides insight into the evolution of kinases and their regulatory targets.
Collapse
|
18
|
In vivo conformation and replication intermediates of circular mitochondrial plasmids in Neurospora and Cryphonectria parasitica. Fungal Biol 2012; 116:919-31. [PMID: 22862920 DOI: 10.1016/j.funbio.2012.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/22/2022]
Abstract
The in vivo conformation and replication intermediates of fungal circular mitochondrial plasmids and plasmid-like mitochondrial element (plMEs) were analyzed by two-dimensional gel electrophoresis and electron microscopy. Plasmids with circular restriction maps exist predominantly as circular molecules and were found to replicate by rolling circle mechanisms. However, the reverse transcriptase-encoding Mauriceville plasmid of Neurospora crassa was observed to replicate by two possible mechanisms: one that is consistent with a reverse transcriptase-mediated process and a second one might involve rolling circle DNA replication. Like the mtDNA-derived plasmid-like elements of N. crassa (Hausner et al. 2006a, b), a plasmid-like element of Cryphonectria parasitica (plME-C9), which consists predominantly of a 1.4 kb nucleotide sequence different from mitochondrial DNA, also was found to replicate by a rolling circle mechanism. Although the techniques used in this study were not suited for the establishment of the in vivo conformation and mode of replication of the mtDNAs of Neurospora or Cryphonectria, we surmise that the rolling circle mechanism might be the predominant mode of DNA replication in fungal mitochondria.
Collapse
|
19
|
Simpson WR, Schmid J, Singh J, Faville MJ, Johnson RD. A morphological change in the fungal symbiont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biol 2011; 116:234-40. [PMID: 22289769 DOI: 10.1016/j.funbio.2011.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 01/18/2023]
Abstract
The endophytic fungus Neotyphodium lolii forms symbiotic associations with perennial ryegrass (Lolium perenne) and infection is typically described as asymptomatic. Here we describe a naturally occurring New Zealand N. lolii isolate that can induce dwarfing of L. perenne and suppress floral meristem development in the dwarfed plants. Further to this we demonstrate that the observed host dwarfing correlates with a reversible morphological change in the endophyte that appears associated with colony age. Mycelium isolated from normally growing plants had a typical cottony appearance in culture whereas mycelium from dwarfed plants appeared mucoid. Cottony colonies could be induced to turn mucoid after prolonged incubation and seedlings inoculated with this mucoid mycelium formed dwarfed plants. Mucoid colonies on the other hand could be induced to form cottony colonies through additional further incubation and these did not induce dwarfing. The reversibility of colony morphology indicates that the mucoid dwarfing phenotype is not the result of mutation. Ten isolates from other locations in New Zealand could also undergo the reversible morphological changes in culture, induce dwarfing and had the same microsatellite genotype as the original isolate, indicating that a N. lolii genotype with the ability to dwarf host plants is common in New Zealand.
Collapse
Affiliation(s)
- W R Simpson
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
20
|
An efficient technique for in vitro preservation of Agaricus subrufescens (=A. brasiliensis). ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0373-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Deletion of a novel F-box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence. Genetics 2010; 185:1257-69. [PMID: 20516500 DOI: 10.1534/genetics.110.117200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While mitochondria are renowned for their role in energy production, they also perform several other integral functions within the cell. Thus, it is not surprising that mitochondrial dysfunction can negatively impact cell viability. Although mitochondria have received an increasing amount of attention in recent years, there is still relatively little information about how proper maintenance of mitochondria and its genomes is achieved. The Neurospora crassa mus-10 mutant was first identified through its increased sensitivity to methyl methanesulfonate (MMS) and was thus believed to be defective in some aspect of DNA repair. Here, we report that mus-10 harbors fragmented mitochondria and that it accumulates deletions in its mitochondrial DNA (mtDNA), suggesting that the mus-10 gene product is involved in mitochondrial maintenance. Interestingly, mus-10 begins to senesce shortly after deletions are visualized in its mtDNA. To uncover the function of MUS-10, we used a gene rescue approach to clone the mus-10 gene and discovered that it encodes a novel F-box protein. We show that MUS-10 interacts with a core component of the Skp, Cullin, F-box containing (SCF) complex, SCON-3, and that its F-box domain is essential for its function in vivo. Thus, we provide evidence that MUS-10 is part of an E3 ubiquitin ligase complex involved in maintaining the integrity of mitochondria and may function to prevent cellular senescence.
Collapse
|
22
|
Zhang L, Fu Y, Xie J, Jiang D, Li G, Yi X. A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum. Virol J 2009; 6:96. [PMID: 19583873 PMCID: PMC2714488 DOI: 10.1186/1743-422x-6-96] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/07/2009] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum is a notorious plant fungal pathogen which spreads across the world. Hypovirulence is a phenomenon where the virulence of fungal pathogens is decreased, even lost, due to mycovirus infection. The potential of hypoviruses for biological control of the chestnut blight fungus (Cryphonectria parasitica) has attracted much interest, and has led to discovery of new hypovirulent strains in other fungi. RESULTS A hypovirulent strain, strain XG36-1, was isolated from a typical lesion on the stem of rapeseed (Brassica napus) caused by Sclerotinia sclerotiorum. Strain XG36-1 grew on PDA very slowly (average 2.5 +/- 0.1 mm/d) with sectoring, and developed abnormal colony morphology with few sclerotia. Unlike health strains (such as wildtype strain XG-13), it was unable to induce lesions on detached leaves of rapeseed. Sclerotia of strain XG36-1 produced apothecia rarely. A sexual progeny test showed that the phenotypes of all 104 sexual progeny were not different from wildtype strain XG-13 which shows normal phenotype of S. sclerotiorum, and protoplast regeneration tests showed that 25.5% of the regenerants of strain XG36-1 were recovered fully. Furthermore, the hypovirulence and its associated traits could be transmitted to XG36-1A34R, a hygromycin-resistance gene labelled sexual progeny of strain XG36-1, by hyphal anastomosis. Transmission electron microscope (TEM) observation showed that the cytoplasm of strain XG36-1 was destroyed and granulated; the membranes of nuclei and mitochondria were disintegrated; and mitochondrial cristae were cavitated. Viral particles (about 40 nm) in hyphae of strain XG36-1, but not in its sexual progeny and wildtype strain XG-13, could be observed with TEM, and several virus-like particles were uniquely enveloped by single layer membrane in the cells of strain XG36-1. Furthermore, the viral particles could be co-transmitted with the hypovirulence traits through hyphal anastomosis. CONCLUSION Hypovirulence and its associated traits of strain XG36-1 could be mediated by a fungal virus. Currently, we could not know the characteristic of this virus, but it likely represent a new type of mycovirus in S. sclerotiorum, and possibly in fungi.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| | - Xianhong Yi
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, PR China
| |
Collapse
|
23
|
Jain N, Cook E, Xess I, Hasan F, Fries D, Fries BC. Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. EUKARYOTIC CELL 2009; 8:858-66. [PMID: 19411622 PMCID: PMC2698302 DOI: 10.1128/ec.00017-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/17/2009] [Indexed: 12/13/2022]
Abstract
Although several virulence factors and associated genes have been identified, the mechanisms that allow Cryptococcus neoformans to adapt during chronic infection and to persist in immunocompromised hosts remain poorly understood. Characterization of senescent cells of C. neoformans demonstrated that these cells exhibit a significantly enlarged cell body and capsule but still cross the blood-brain barrier. C. neoformans cells with advanced generational age are also more resistant to phagocytosis and killing by antifungals, which could promote their selection during chronic disease in humans. Senescent cells of RC-2, a C. neoformans strain that undergoes phenotypic switching, manifest switching rates up to 11-fold higher than those of younger cells. Infection experiments with labeled cells suggest that senescent yeast cells can potentially accumulate in vivo. Mathematical modeling incorporating different switching rates demonstrates how increased switching rates promote the emergence of hypervirulent mucoid variants during chronic infection. Our findings introduce the intriguing concept that senescence in eukaryotic pathogens could be a mechanism of microevolution that may promote pathoadaptation and facilitate evasion of an evolving immune response.
Collapse
Affiliation(s)
- Neena Jain
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|