1
|
Wu X, Zhang S, Long C, An Z, Xing X, Wen F, Bao S. Mycoplasmas bovis P48 induces apoptosis in EBL cells via an endoplasmic reticulum stress-dependent signaling pathway. Vet Microbiol 2021; 255:109013. [PMID: 33676093 DOI: 10.1016/j.vetmic.2021.109013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Mycoplasma bovis (M. bovis) is a small bacterium that lacks a cell wall. M. bovis infection can result in chronic pneumonia and polyarthritis syndrome (CPPS), otitis media, conjunctivitis, and meningitis in feedlot cattle and mastitis in dairy cattle. To gain more understanding of the mechanism of M. bovis and host interaction, this study focused on P48, an important membrane protein involved in M. bovis adhesion, proliferation and virulence. In this study, exogenous P48 protein was introduced to explore its function in embryonic bovine lung (EBL) cells by recombinant vector and protein purification. We found that M. bovis infection inhibited EBL cells growth and enhanced apoptosis. Both intracellular and extracellular P48 protein treatment also induce apoptosis. Moreover, P48 activates endoplasmic reticulum (ER) stress response via increasing ER stress markers expression. To further explore the underlying mechanism, we performed inhibition experiments using ER stress inhibitor 4-PBA and specific siRNA interference against GRP78, and found that P48 protein modulated EBL cells apoptosis in an ER stress signaling-dependent manner. This study provided more data to further understand M. bovis infection mechanism and develop effective anti-mycoplasma strategy.
Collapse
Affiliation(s)
- Xiaochun Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Shengying Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Cuiqin Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhen An
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb Pathog 2020; 144:104160. [PMID: 32194181 DOI: 10.1016/j.micpath.2020.104160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/20/2022]
Abstract
Bacterial secretome is a comprehensive catalog of bacterial proteins that are released or secreted outside the cells. They offer a number of factors that possess several significant roles in virulence as well as cell to cell communication and hence play a core role in bacterial pathogenesis. Sometimes these proteins are bounded with membranes giving them the shape of vesicles called extracellular vesicles (EVs) or outer membrane vesicles (OMVs). Bacteria secrete these proteins via Sec and Tat pathways into the periplasm. Secreted proteins have found to be important as diagnostic markers as well as antigenic factors for the development of an effective candidate vaccine. Recently, the research in the field of secretomics is growing up and getting more interesting due to their direct involvement in the pathogenesis of the microorganisms leading to the infection. Many pathogenic bacteria have been studied for their secretome and the results illustrated novel antigens. This review highlights the secretome studies of different pathogenic bacteria in humans and animals, general secretion mechanisms, different approaches and challenges in the secretome of Mycoplasma sp.
Collapse
|
3
|
Salina A, Timenetsky J, Barbosa MS, Azevedo CM, Langoni H. Microbiological and molecular detection of Mycoplasma bovis in milk samples from bovine clinical mastitis. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: The genus Mycoplasma includes more than 200 bacterial species that cause disease in animals. It is responsible for causing mastitis in bovines and may be related to other manifestations, such as arthritis and pneumonia in calves and heifers. The present study aimed to detect Mycoplasma bovis isolated from milk samples of bovine clinical mastitis, and to compare the isolation rates in two culture media: Hayflick and SP4. An initial screening was performed in order to detect the presence of the class Mollicutes in 1166 milk samples from clinical mastitis by the conventional Polymerase Chain Reaction (PCR) technique. According to the 1166 milk samples evaluated, 8.6% (100/1166) were positive to class Mollicutes. Regarding molecular analyses, 1.1% (13/1166) of conventional PCR for positive M. bovis was obtained and 0.9% (11/1166) in real-time PCR. The results of the microbiological culture of the 100 samples previously screened demonstrated that 6% (6/100) of colony growth have been developed when using the Hayflick medium, and 11% (11/100) when using the SP4 medium (including the positive on Hayflick medium). Concerning the 11 isolates obtained in the microbiological culture, conventional PCR confirmed M. bovis in nine of them, and two cultures were negative. In the phylogenetic analysis of the isolates, all of them were grouped in M. bovis and M. agalactiae clusters. The results confirmed the importance of the presence of M. bovis in the etiology of bovine clinical mastitis and reinforced the need for further studies to elucidate other Mycoplasma species that may be involved in bovine clinical mastitis in Brazil.
Collapse
|
4
|
Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. Gap analysis of Mycoplasma bovis disease, diagnosis and control: An aid to identify future development requirements. Transbound Emerg Dis 2018; 65 Suppl 1:91-109. [PMID: 29582590 DOI: 10.1111/tbed.12860] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/07/2023]
Abstract
There is a worldwide problem of disease caused by Mycoplasma (M.) bovis in cattle; it has a significant detrimental economic and animal welfare impact on cattle rearing. Infection can manifest as a plethora of clinical signs including mastitis, pneumonia, arthritis, keratoconjunctivitis, otitis media and genital disorders that may result in infertility and abortion. Current diagnosis and control information are reviewed and analysed to identify gaps in knowledge of the causative organism in respect of the disease pathology, diagnosis and control methods. The main considerations are as follows: no vaccines are commercially available; antimicrobial resistance is increasing; diagnostic and antimicrobial sensitivity testing needs to be improved; and a pen-side test would facilitate more rapid diagnosis and implementation of treatment with antimicrobials. More data on host susceptibility, stress factors, immune response and infectious dose levels are required. The impact of asymptomatic carriers, M. bovis survival in the environment and the role of wildlife in transmitting the disease also needs investigation. To facilitate development of vaccines, further analysis of more M. bovis genomes, its pathogenic mechanisms, including variable surface proteins, is required, along with reproducible disease models.
Collapse
Affiliation(s)
| | | | - K Sachse
- Friedrich-Loeffler-Institut, Jena, Germany.,Department of RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität, Jena, Germany
| | - L K Fox
- Washington State University, Pullman, WA, USA
| | | | - R D Ayling
- Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
5
|
Khan FA, Rasheed MA, Faisal M, Menghwar H, Zubair M, Sadique U, Chen H, Guo A. Proteomics analysis and its role in elucidation of functionally significant proteins in Mycoplasma bovis. Microb Pathog 2017; 111:50-59. [PMID: 28826762 DOI: 10.1016/j.micpath.2017.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Mycoplasma bovis (M. bovis) is an emerging devastating cause of pneumonia in dairy and feedlot calves around the world, largely due to its increasing resistance to new generation effective antibiotics and lack of efficient vaccine. Failure of protective measures against M. bovis is mainly due to nonspecific targets. Most of the virulent factors of M. bovis and their underlying mechanisms are obscure to devise an effective control strategy. Full genome sequences of M. bovis strains basically provided a useful platform for the accurate identification of novel proteins and understanding their biological value using proteomics tools. Most of the previously documented proteins of M. bovis are involved in adhesion to host cells and are antigenic in nature. However, host immune response to some antigens proved to be non-protective. For the diagnosis of M. bovis infection, a serological assay based on whole cell proteins of M. bovis is commercially available but the specificity is likely to be improved by identifying and targeting the specific proteins. Many of the predicted proteins of M. bovis remain hypothetical, as their functions are yet to be confirmed experimentally. This review mainly focuses on the proteomics analysis of M. bovis and its role in identification of the virulence related factors and antigenic proteins of M. bovis. Future research directions have also been highlighted in this script for the application of important antigenic factors of M. bovis.
Collapse
Affiliation(s)
- Farhan Anwar Khan
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25100, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
| | - Muhammad Faisal
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Umar Sadique
- Department of Animal Health, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25100, Pakistan
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhao G, Zhang H, Chen X, Zhu X, Guo Y, He C, Anwar Khan F, Chen Y, Hu C, Chen H, Guo A. Mycoplasma bovis NADH oxidase functions as both a NADH oxidizing and O 2 reducing enzyme and an adhesin. Sci Rep 2017; 7:44. [PMID: 28246386 PMCID: PMC5427908 DOI: 10.1038/s41598-017-00121-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/02/2017] [Indexed: 11/30/2022] Open
Abstract
Mycoplasma bovis causes considerable economic losses in the cattle industry worldwide. In mycoplasmal infections, adhesion to the host cell is of the utmost importance. In this study, the amino acid sequence of NOX was predicted to have enzymatic domains. The nox gene was then cloned and expressed in Escherichia coli. The enzymatic activity of recombinant NOX (rNOX) was confirmed based on its capacity to oxidize NADH to NAD+ and reduce O2 to H2O2. The adherence of rNOX to embryonic bovine lung (EBL) cells was confirmed with confocal laser scanning microscopy, enzyme-linked immunosorbent assay, and flow cytometry. Both preblocking EBL cells with purified rNOX and preneutralizing M. bovis with polyclonal antiserum to rNOX significantly reduced the adherence of M. bovis to EBL cells. Mycoplasma bovisNOX–expressed a truncated NOX protein at a level 10-fold less than that of the wild type. The capacities of M. bovisNOX– for cell adhesion and H2O2 production were also significantly reduced. The rNOX was further used to pan phage displaying lung cDNA library and fibronectin was determined to be potential ligand. In conclusion, M. bovis NOX functions as both an active NADH oxidase and adhesin, and is therefore a potential virulence factor.
Collapse
Affiliation(s)
- Gang Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xifang Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yusi Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenfei He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Farhan Anwar Khan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
High Prevalence of Diverse Insertion Sequences within the rRNA Operons of Mycoplasma bovis. Appl Environ Microbiol 2016; 82:6386-6394. [PMID: 27542937 DOI: 10.1128/aem.01628-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (ISs) are widespread in the genome of Mycoplasma bovis strain PG45, but no ISs were identified within its two tandemly positioned rRNA operons (rrn1 and rrn2). However, characterization of the rrn locus in 70 M. bovis isolates revealed the presence of ISs related to the ISMbov1 (IS30 family) and ISMbov4 (IS4 family) isomers in 35 isolates. ISs were inserted into intergenic region 1 (IGR-1) or IGR-3, which are the putative promoter regions of rrn1 and rrn2, respectively, and into IGR-5, located downstream of the rrl2 gene. Seven different configurations (A to G) of the rrn locus with respect to ISs were identified, including those in five annotated genomes. The transcriptional start site for the single rrn operon in M. bovis strain 88127 was mapped within IGR-1, 60 bp upstream of the rrs gene. Notably, only 1 nucleotide separated the direct repeat (DR) for ISMbov1 and the promoter -35 element in configuration D, while in configuration F, the -35 motif was a part of the ISMbov1 DR. Relative quantitative real-time (qRT) PCR analysis and growth rate comparisons detected a significant increase (P < 0.05) in the expression of the rrs genes and in the number of viable cells during log phase growth (8, 12, and 16 h) in the strains with configuration F in comparison to strains with one or two rrn operons that did not have ISs. A high prevalence of IS elements within or close to the M. bovis rrn operon-promoter region may reflect their important role in regulation of both ribosome synthesis and function. IMPORTANCE Data presented in this study show a high prevalence of diverse ISs within the M. bovis rrn locus resulting in intraspecies variability and diversity. Such abundance of IS elements near or within the rrn locus may offer a selective advantage to M. bovis Moreover, the fact that expression of the rrs genes as well as the number of viable cells increased in the group of strains with IS element insertion within a putative promoter -35 sequence (configuration F) in comparison to that in strains with one or two rrn operons that do not have ISs may serve as a basis for understanding the possible role of M. bovis IS elements in fundamental biological processes such as regulation of ribosome synthesis and function.
Collapse
|
8
|
16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis. Antimicrob Agents Chemother 2014; 59:796-802. [PMID: 25403668 DOI: 10.1128/aac.03876-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mycoplasma bovis isolates with decreased susceptibilities to tetracyclines are increasingly reported worldwide. The acquired molecular mechanisms associated with this phenomenon were investigated in 70 clinical isolates of M. bovis. Sequence analysis of the two 16S rRNA-encoding genes (rrs3 and rrs4 alleles) containing the primary binding pocket for tetracycline (Tet-1 site) was performed on isolates with tetracycline hydrochloride MICs of 0.125 to 16 μg/ml. Mutations at positions A965T, A967T/C (Escherichia coli numbering) of helix 31, U1199C of helix 34, and G1058A/C were identified. Decreased susceptibilities to tetracycline (MICs, ≥2 μg/ml) were associated with mutations present at two (A965 and A967) or three positions (A965, A967, and G1058) of the two rrs alleles. No tet(M), tet(O), or tet(L) determinants were found in the genome of any of the 70 M. bovis isolates. The data presented correlate (P<0.0001) the mutations identified in the Tet-1 site of clinical isolates of M. bovis with decreased susceptibility to tetracycline.
Collapse
|
9
|
Adamu JY, Wawegama NK, Browning GF, Markham PF. Membrane proteins of Mycoplasma bovis and their role in pathogenesis. Res Vet Sci 2013; 95:321-5. [PMID: 23810376 DOI: 10.1016/j.rvsc.2013.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Mycoplasma membrane proteins influence cell shape, cell division, motility and adhesion to host cells, and are thought to be integrally involved in the pathogenesis of mycoplasmoses. Many of the membrane proteins predicted from mycoplasma genome sequences remain hypothetical, as their presence in cellular protein preparations is yet to be established experimentally. Recent genome sequences of several strains of Mycoplasma bovis have provided further insight into the potential role of the membrane proteins of this pathogen in colonisation and infection. This review highlights recent advances in knowledge about the influence of M. bovis membrane proteins on the pathogenesis of infection with this species and identifies future research directions for enhancing our understanding of the role of these proteins.
Collapse
Affiliation(s)
- James Y Adamu
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
10
|
Li Y, Zheng H, Liu Y, Jiang Y, Xin J, Chen W, Song Z. The complete genome sequence of Mycoplasma bovis strain Hubei-1. PLoS One 2011; 6:e20999. [PMID: 21731639 PMCID: PMC3120828 DOI: 10.1371/journal.pone.0020999] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/16/2011] [Indexed: 11/27/2022] Open
Abstract
Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5′-nucleotidase.
Collapse
Affiliation(s)
- Yuan Li
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Yang Liu
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Yanwei Jiang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Jiuqing Xin
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- * E-mail:
| | - Wei Chen
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Zhiqiang Song
- National Contagious Bovine Pleuropneumonia Reference Laboratory, Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
11
|
Nouvel LX, Sirand-Pugnet P, Marenda MS, Sagné E, Barbe V, Mangenot S, Schenowitz C, Jacob D, Barré A, Claverol S, Blanchard A, Citti C. Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics 2010; 11:86. [PMID: 20122262 PMCID: PMC2824730 DOI: 10.1186/1471-2164-11-86] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While the genomic era is accumulating a tremendous amount of data, the question of how genomics can describe a bacterial species remains to be fully addressed. The recent sequencing of the genome of the Mycoplasma agalactiae type strain has challenged our general view on mycoplasmas by suggesting that these simple bacteria are able to exchange significant amount of genetic material via horizontal gene transfer. Yet, events that are shaping mycoplasma genomes and that are underlining diversity within this species have to be fully evaluated. For this purpose, we compared two strains that are representative of the genetic spectrum encountered in this species: the type strain PG2 which genome is already available and a field strain, 5632, which was fully sequenced and annotated in this study. RESULTS The two genomes differ by ca. 130 kbp with that of 5632 being the largest (1006 kbp). The make up of this additional genetic material mainly corresponds (i) to mobile genetic elements and (ii) to expanded repertoire of gene families that encode putative surface proteins and display features of highly-variable systems. More specifically, three entire copies of a previously described integrative conjugative element are found in 5632 that accounts for ca. 80 kbp. Other mobile genetic elements, found in 5632 but not in PG2, are the more classical insertion sequences which are related to those found in two other ruminant pathogens, M. bovis and M. mycoides subsp. mycoides SC. In 5632, repertoires of gene families encoding surface proteins are larger due to gene duplication. Comparative proteomic analyses of the two strains indicate that the additional coding capacity of 5632 affects the overall architecture of the surface and suggests the occurrence of new phase variable systems based on single nucleotide polymorphisms. CONCLUSION Overall, comparative analyses of two M. agalactiae strains revealed a very dynamic genome which structure has been shaped by gene flow among ruminant mycoplasmas and expansion-reduction of gene repertoires encoding surface proteins, the expression of which is driven by localized genetic micro-events.
Collapse
Affiliation(s)
- Laurent X Nouvel
- Université de Toulouse, ENVT, UMR 1225 Interactions Hôtes - Agents Pathogènes, 31076 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|