1
|
Ma X, Huang X, Jiao Z, He L, Li Y, Ow DW. Overproduction of plant nuclear export signals enhances diamide tolerance in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2020; 531:335-340. [PMID: 32800339 DOI: 10.1016/j.bbrc.2020.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
The nuclear export signal (NES) endows a protein nuclear export ability. Surprisingly, our previous study shows that just the NES peptide of Schizosaccharomyces pombe Oxs1 (SpOxs1NES) can confer diamide tolerance by competing with transcription factor Pap1 for nuclear transport. This finding intrigued us to test the function of NESs from heterologous organisms. The Arabidopsis thaliana zinc finger transcription factor OXIDATIVE STRESS 2 (AtOXS2) is a nucleocytoplasmic shuttling protein and nearly all OXS2 members from maize and rice contain an NES. In this study, we find that the plant OXS2 members and their C-terminus (AT3 peptide) can confer diamide tolerance due to their NESs, and amino acids in non-conserved as well as conserved positions are necessary for the diamide tolerance. As in SpOxs1NES, the enhanced tolerance to diamide in fission yeast depends on Pap1. Like SpOxs1NES, OXS2 family NESs appear to compete for nuclear transport of the Pap1-like Arabidopsis protein bZIP10, as when overproduced in Arabidopsis protoplasts, bZIP10 is retained in the nucleus.
Collapse
Affiliation(s)
- Xiaoling Ma
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xing Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengli Jiao
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lilong He
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Abstract
Nitric oxide (NO) is a cellular signalling molecule widely conserved among organisms, including microorganisms such as bacteria, yeasts, and fungi, and higher eukaryotes such as plants and mammals. NO is mainly produced by the activities of NO synthase (NOS) or nitrite reductase (NIR). There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis, based on the balance between NO synthesis and degradation, is important for regulating its physiological functions, since an excess of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but the role of NO and the mechanism underlying NO signalling are poorly understood due to the lack of mammalian NOS orthologs in the yeast genome. NOS and NIR activities have been observed in yeast cells, but the gene-encoding NOS and the mechanism by which NO production is catalysed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain intracellular redox balance following endogenous NO production, treatment with exogenous NO, or exposure to environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed. Such investigations into NO signalling are essential for understanding how NO modulates the genetics and physiology of yeast. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signalling may be a potential target for the construction and engineering of industrial yeast strains.
Collapse
|
3
|
Castro DE, Murguía-Romero M, Thomé PE, Peña A, Calderón-Torres M. Putative 3-nitrotyrosine detoxifying genes identified in the yeast Debaryomyces hansenii : In silico search of regulatory sequences responsive to salt and nitrogen stress. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
4
|
Kar P, Biswas P, Ghosh S. Multimodal control of transcription factor Pap1 in Schizosaccharomyces pombe under nitrosative stress. Biochem Biophys Res Commun 2017; 489:42-47. [PMID: 28528978 DOI: 10.1016/j.bbrc.2017.05.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
Schizosaccharomyces pombe Pap1, a bZIP transcription factor, is highly homologous to the mammalian c-Jun protein that belongs to the AP1 family of transcriptional regulators. The role of transcription factor Pap1 has been extensively studied under oxidative stress. Two cysteine residues in Pap1p namely, C278 and C501 form disulfide linkage under oxidative stress resulting in nuclear accumulation. We first time showed the involvement of Pap1 in the protection against nitrosative stress. In the present study we show that pap1 deletion makes growth of S. pombe sensitive to nitrosative stress. pap1 deletion also causes delayed recovery in terms of mitotic index under nitrosative stress. Our flow cytometry data shows that pap1 deletion causes slower recovery from the slowdown of DNA replication under nitrosative stress. This is the first report where we show that Pap1 transcription factor is localized in the nucleus under nitrosative stress. From our study it is evident that nuclear localization of Pap1 under nitrosative stress was not due to reactive oxygen species formation.
Collapse
Affiliation(s)
- Puranjoy Kar
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pranjal Biswas
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
5
|
Nitric oxide signaling in yeast. Appl Microbiol Biotechnol 2016; 100:9483-9497. [DOI: 10.1007/s00253-016-7827-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
|
6
|
Yu Y, Yang Z, Guo K, Li Z, Zhou H, Wei Y, Li J, Zhang X, Harvey P, Yang H. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2. Curr Microbiol 2015; 70:618-22. [PMID: 25561405 DOI: 10.1007/s00284-014-0764-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/16/2014] [Indexed: 12/15/2022]
Abstract
Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.
Collapse
Affiliation(s)
- Yang Yu
- Biology Institute, Shandong Academy of Sciences, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Majumdar U, Biswas P, Subhra Sarkar T, Maiti D, Ghosh S. Regulation of cell cycle and stress responses under nitrosative stress in Schizosaccharomyces pombe. Free Radic Biol Med 2012; 52:2186-200. [PMID: 22561704 DOI: 10.1016/j.freeradbiomed.2012.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Department of Biochemistry, University College of Science, Calcutta University, Kolkata 700019, West Bengal, India
| | | | | | | | | |
Collapse
|
8
|
Park MS, Kim HJ, Park AR, Ahn K, Lim HW, Lim CJ. Pap1p-dependent upregulation of thioredoxin 3 and thioredoxin reductase genes from the fission yeast under nitrosative stress. Can J Microbiol 2012; 58:206-11. [DOI: 10.1139/w11-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min-Sik Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Hyeon-Jung Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - A Rum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| | - Kisup Ahn
- Department of Health and Environment, Baekseok Culture University, Cheonan 330-705, Korea
| | - Hye-Won Lim
- Shebah Biotech Inc., Chuncheon Biotechnology Foundation, Hi-Tech Venture Town, Chuncheon 200-161, Korea
| | - Chang-Jin Lim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
9
|
Abstract
The opportunistic human fungal pathogen Candida albicans encounters diverse environmental stresses when it is in contact with its host. When colonizing and invading human tissues, C. albicans is exposed to ROS (reactive oxygen species) and RNIs (reactive nitrogen intermediates). ROS and RNIs are generated in the first line of host defence by phagocytic cells such as macrophages and neutrophils. In order to escape these host-induced oxidative and nitrosative stresses, C. albicans has developed various detoxification mechanisms. One such mechanism is the detoxification of NO (nitric oxide) to nitrate by the flavohaemoglobin enzyme CaYhb1. Members of the haemoglobin superfamily are highly conserved and are found in archaea, eukaryotes and bacteria. Flavohaemoglobins have a dioxygenase activity [NOD (NO dioxygenase domain)] and contain three domains: a globin domain, an FAD-binding domain and an NAD(P)-binding domain. In the present paper, we examine the nitrosative stress response in three fungal models: the pathogenic yeast C. albicans, the benign budding yeast Saccharomyces cerevisiae and the benign fission yeast Schizosaccharomyces pombe. We compare their enzymatic and non-enzymatic NO and RNI detoxification mechanisms and summarize fungal responses to nitrosative stress.
Collapse
|
10
|
Kang MH, Jung HJ, Hyun DH, Park EH, Lim CJ. Protective roles and Pap1-dependent regulation of the Schizosaccharomyces pombe spy1 gene under nitrosative and nutritional stresses. Mol Biol Rep 2010; 38:1129-36. [DOI: 10.1007/s11033-010-0210-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/11/2010] [Indexed: 11/29/2022]
|
11
|
Kig C, Temizkan G. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. PROTOPLASMA 2009; 238:59-66. [PMID: 19795185 DOI: 10.1007/s00709-009-0074-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Nitric oxide synthases (NOS) catalyze the synthesis of ubiquitous signaling molecule nitric oxide (NO) which controls numerous biological processes. Using a spectrofluorometric NOS assay, we have measured the rate of total NO production in the crude cell extracts of Schizosaccharomyces pombe. NO production was reduced in the absence of NOS cofactors calmodulin and tetrahydrobiopterin, and a competitive NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) was able to cause a statistically significant inhibition on the rate of total NO production. These results, for the first time, provide evidence that an enzyme with a NOS-like activity may be present in the fission yeast. In order to assess the possible regulatory roles of NO as a signaling molecule in this yeast, using the differential display technique, we screened for NO-responsive genes whose expression decreased upon exposure to L-NAME and increased in response to an NO donor, sodium nitroprusside treatment. Differential expression patterns of byr1, pek1, sid1, and wis1 genes were confirmed by quantitative real-time PCR. The physiological experiments performed based on the functions and molecular interactions of these genes have pointed to the possibility that NO production might be required for sporulation in S. pombe. Taken together, these findings suggest that NO may function as a signaling molecule which can induce both transcriptional and physiological changes in the fission yeast. Hence, these data also imply that S. pombe can be used as a model system for investigating the mechanisms underlying NO-related complex signaling pathways.
Collapse
Affiliation(s)
- Cenk Kig
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey.
| | | |
Collapse
|
12
|
Song SH, Kim BM, Lim CJ, Song YS, Park EH. Expression of the atf1+ gene is upregulated in fission yeast under nitrosative and nutritional stresses. Can J Microbiol 2009; 55:1323-7. [PMID: 19940942 DOI: 10.1139/w09-087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work was designed to assess regulation of the atf1+ gene in the fission yeast Schizosaccharomyces pombe under nitrosative and nutritional stresses, using the atf1+-lacZ fusion gene and RT-PCR. Nitric oxide (NO)-generating sodium nitroprusside (SNP; 10 micromol/L) and nitrogen depletion significantly enhanced synthesis of beta-galactosidase from the atf1+-lacZ fusion gene in S. pombe Pap1-positive KP1 cells, but not in S. pombe Pap1-negative TP108-3C cells. SNP (10 micromol/L) and nitrogen depletion also caused a significant increase in atf1+ mRNA levels in Pap1-positive cells, but not in Pap1-negative cells. Depletion of glucose marginally increased synthesis of beta-galactosidase from the fusion gene in S. pombe Pap1-positive cells. Taken together, the S. pombe atf1+ gene is upregulated by nitrosative and nutritional stresses on a transcriptional level, possibly via the mediation of Pap1.
Collapse
Affiliation(s)
- S-H Song
- Division of Life Sciences and Research Institute of Life Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chuncheon 200-701, Korea
| | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|