1
|
Pan H, Shim A, Lubin MB, Belin BJ. Hopanoid lipids promote soybean -Bradyrhizobium symbiosis. mBio 2024; 15:e0247823. [PMID: 38445860 PMCID: PMC11005386 DOI: 10.1128/mbio.02478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 03/07/2024] Open
Abstract
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu-shc::∆shc. GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta, Pcu-shc::∆shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within the host tissue. RNA-seq revealed that hopanoid loss reduces the expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances the expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. A major problem for global sustainability is feeding our exponentially growing human population while available arable land decreases. Harnessing the power of plant-beneficial microbes is a potential solution, including increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically significant host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
Collapse
Affiliation(s)
- Huiqiao Pan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Ashley Shim
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew B. Lubin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brittany J. Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Pan H, Shim A, Lubin MB, Belin BJ. Hopanoid lipids promote soybean- Bradyrhizobium symbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556284. [PMID: 37732186 PMCID: PMC10508751 DOI: 10.1101/2023.09.04.556284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, the most economically significant Bradyrhizobium host, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu- shc ::Δ shc . GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta , Pcu- shc ::Δ shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within host tissue. RNA-seq revealed that hopanoid loss reduces expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. IMPORTANCE A major problem for global sustainability is feeding our exponentially growing human population while available arable land is decreasing, especially in areas with the greatest population growth. Harnessing the power of plant-beneficial microbes has gained attention as a potential solution, including the increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically important host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
Collapse
|
3
|
Jarecki W. Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2431. [PMID: 37446991 DOI: 10.3390/plants12132431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Soybean is one of the most important legumes in the world, and its advantages and disadvantages are well known. As a result of symbiosis with the bacterium Bradyrhizobium japonicum, soybean can assimilate nitrogen from the air and is therefore not fertilized with this element, or if it is, only at small doses. In soybean agriculture practice, an important treatment is the inoculation of seeds with symbiotic bacteria and optimal fertilization with selected nutrients. Therefore, a three-year (2019-2021) field experiment was carried out to investigate the effects of soybean in the field to a seed Rhizobium inoculation or coating and molybdenum foliar fertilization. There were no significant interactions between the tested treatments over the years. It was demonstrated that the best variant was seed inoculation before sowing in combination with foliar molybdenum application. As a result of this treatment, a significant increase in nodulation, soil plant analysis development (SPAD) index, leaf area index (LAI) and seed yield (by 0.61 t·ha-1) was obtained compared to the control. In addition, the content of total protein in the seeds increased, while the content of crude fat decreased, which significantly modified the yield of both components. Sowing coated seeds in the Fix Fertig technology was less effective compared to inoculation, but it was significantly better than that in the control. Coating seeds with B. japonicum, in combination with foliar fertilization with molybdenum, could be recommended for agricultural practice, which was confirmed by economic calculations. Future experiments will assess the soybean's response to seed inoculation or coating and fertilization with other micronutrients.
Collapse
Affiliation(s)
- Wacław Jarecki
- Department of Crop Production, University of Rzeszów, Zelwerowicza 4 St., 35-601 Rzeszów, Poland
| |
Collapse
|
4
|
Comparative Analysis of Three Bradyrhizobium diazoefficiens Genomes Show Specific Mutations Acquired during Selection for a Higher Motility Phenotype and Adaption to Laboratory Conditions. Microbiol Spectr 2021; 9:e0056921. [PMID: 34762518 PMCID: PMC8585493 DOI: 10.1128/spectrum.00569-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial genomes are being extensively studied using next-generation sequencing technologies in order to understand the changes that occur under different selection regimes. In this work, the number and type of mutations that have occurred in three Bradyrhizobium diazoefficiens USDA 110T strains under laboratory conditions and during selection for a more motile phenotypic variant were analyzed. Most of the mutations found in both processes consisted of single nucleotide polymorphisms, single nucleotide deletions or insertions. In the case of adaptation to laboratory conditions, half of the changes occurred within intergenic regions, and around 80% were insertions. When the more motile phenotypic variant was evaluated, eight single nucleotide polymorphisms and an 11-bp deletion were found, although none of them was directly related to known motility or chemotaxis genes. Two mutants were constructed to evaluate the 11-bp deletion affecting the alpha subunit of 2-oxoacid:acceptor oxidoreductase (AAV28_RS30705-blr6743). The results showed that this single deletion was not responsible for the enhanced motility phenotype. IMPORTANCE The genetic and genomic changes that occur under laboratory conditions in Bradyrhizobium diazoefficiens genomes remain poorly studied. Only a few genome sequences of this important nitrogen-fixing species are available, and there are no genome-wide comparative analyses of related strains. In the present work, we sequenced and compared the genomes of strains derived from a parent strain, B. diazoefficiens USDA 110, that has undergone processes of repeated culture in the laboratory environment, or phenotypic selection toward antibiotic resistance and enhanced motility. Our results represent the first analysis in B. diazoefficiens that provides insights into the specific mutations that are acquired during these processes.
Collapse
|
5
|
Compton KK, Scharf BE. Rhizobial Chemoattractants, the Taste and Preferences of Legume Symbionts. FRONTIERS IN PLANT SCIENCE 2021; 12:686465. [PMID: 34017351 PMCID: PMC8129513 DOI: 10.3389/fpls.2021.686465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 05/21/2023]
Abstract
The development of host-microbe interactions between legumes and their cognate rhizobia requires localization of the bacteria to productive sites of initiation on the plant roots. This end is achieved by the motility apparatus that propels the bacterium and the chemotaxis system that guides it. Motility and chemotaxis aid rhizobia in their competitiveness for space, resources, and nodulation opportunities. Here, we examine studies on chemotaxis of three major model rhizobia, namely Sinorhizobium meliloti, Rhizobium leguminosarum, and Bradyrhizobium japonicum, cataloging their range of attractant molecules and correlating this in the context of root and seed exudate compositions. Current research areas will be summarized, gaps in knowledge discussed, and future directions described.
Collapse
Affiliation(s)
| | - Birgit E. Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Dual Control of Flagellar Synthesis and Exopolysaccharide Production by FlbD-FliX Class II Regulatory Proteins in Bradyrhizobium diazoefficiens. J Bacteriol 2021; 203:JB.00403-20. [PMID: 33468586 DOI: 10.1128/jb.00403-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, has two independent flagellar systems: a single subpolar flagellum and several lateral flagella. Each flagellum is a very complex organelle composed of 30 to 40 different proteins located inside and outside the cell whereby flagellar gene expression must be tightly controlled. Such control is achieved by a hierarchy of regulators that ensure the timing of synthesis and the allocation of the different flagellar substructures. Previously, we analyzed the gene organization, expression, and function of the lateral flagellar system. Here, we studied the role of the response regulator FlbD and its trans-acting regulator FliX in the regulation of subpolar flagellar genes. We found that the LP-ring, distal rod, and hook of the subpolar flagellum were tightly controlled by FlbD and FliX. Furthermore, we obtained evidence for the existence of cross-regulation between these gene products and the expression of LafR, the master regulator of lateral flagella. In addition, we observed that extracellular polysaccharide production and biofilm formation also responded to these flagellar regulators. In this regard, FlbD might contribute to the switch between the planktonic and sessile states.IMPORTANCE Most environmental bacteria switch between two free-living states: planktonic, in which individual cells swim propelled by flagella, and sessile, in which bacteria form biofilms. Apart from being essential for locomotion, the flagellum has accessory functions during biofilm formation. The synthesis of flagella is a highly regulated process, and coordination with accessory functions requires the interconnection of various regulatory networks. Here, we show the role of class II regulators involved in the synthesis of the B. diazoefficiens subpolar flagellum and their possible participation in cross-regulation with the lateral flagellar system and exopolysaccharide production. These findings highlight the coordination of the synthetic processes of external structures, such as subpolar and lateral flagella, with exopolysaccharides, which are the main component of the biofilm matrix.
Collapse
|
7
|
Characterization of FliL Proteins in Bradyrhizobium diazoefficiens: Lateral FliL Supports Swimming Motility, and Subpolar FliL Modulates the Lateral Flagellar System. J Bacteriol 2020; 202:JB.00708-19. [PMID: 31843800 DOI: 10.1128/jb.00708-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Bradyrhizobium diazoefficiens is a soil alphaproteobacterium that possesses two evolutionarily distinct flagellar systems, a constitutive subpolar flagellum and inducible lateral flagella that, depending on the carbon source, may be expressed simultaneously in liquid medium and used interactively for swimming. In each system, more than 30 genes encode the flagellar proteins, most of which are well characterized. Among the exceptions is FliL, which has been scarcely studied in alphaproteobacteria and whose function in other bacterial classes is somewhat controversial. Because each B. diazoefficiens flagellar system contains its own fliL paralog, we obtained the respective deletions ΔfliLS (subpolar) and ΔfliLL (lateral) to study their functions in swimming. We determined that FliLL was essential for lateral flagellum-driven motility. FliLS was dispensable for swimming in either liquid or semisolid medium; however, it was found to play a crucial role in upregulation of the lateral flagellum regulon under conditions of increased viscosity/flagellar load. Therefore, although FliLS seems to be not essential for swimming, it may participate in a mechanosensor complex that controls lateral flagellum induction.IMPORTANCE Bacterial motility propelled by flagella is an important trait in most environments, where microorganisms must explore the habitat toward beneficial resources and evade toxins. Most bacterial species have a unique flagellar system, but a few species possess two different flagellar systems in the same cell. An example is Bradyrhizobium diazoefficiens, the N2-fixing symbiont of soybean, which uses both systems for swimming. Among the less-characterized flagellar proteins is FliL, a protein typically associated with a flagellum-driven surface-based collective motion called swarming. By using deletion mutants in each flagellar system's fliL, we observed that one of them (lateral) was required for swimming, while the other (subpolar) took part in the control of lateral flagellum synthesis. Hence, this protein seems to participate in the coordination of activity and production of both flagellar systems.
Collapse
|
8
|
Liu X, Xie Z. Inactivation of the Phosphatase CheZ Alters Cell-Surface Properties of Azorhizobium caulinodans ORS571 and Symbiotic Association with Sesbania rostrata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1547-1556. [PMID: 31287368 DOI: 10.1094/mpmi-05-19-0143-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Azorhizobium caulinodans can form root and stem nodules with the host plant Sesbania rostrata. The role of the CheZ phosphatase in the A. caulinodans chemotaxis pathway was previously explored using the nonchemotactic cheZ mutant strain (AC601). This mutant displayed stronger attachment to the root surface, enhancing early colonization; however, this did not result in increased nodulation efficiency. In this study, we further investigated the role of CheZ in the interaction between strain ORS571 and the roots of its host plant. By tracking long-term colonization dynamic of cheZ mutant marked with LacZ, we found a decrease of colonization of the cheZ mutant during this process. Furthermore, the cheZ mutant could not spread on the root surface freely and was gradually outcompeted by the wild type in original colonization sites. Quantitative reverse-transcription PCR analyses showed that exp genes encoding exopolysaccharides synthesis, including oac3, were highly expressed in the cheZ mutant. Construction of a strain carrying a deletion of both cheZ and oac3 resulted in a mutant strain defective in the colonization process to the same extent as found with the oac3 single-mutant strain. This result suggested that the enhanced colonization of the cheZ mutant may be achieved through regulating the formation of exopolysaccharides. This shows the importance of the chemotactic proteins in the interaction between rhizobia and host plants, and expands our understanding of the symbiosis interaction between rhizobium and host plant.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, People's Republic of China
- Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| |
Collapse
|
9
|
Belin BJ, Tookmanian EM, de Anda J, Wong GCL, Newman DK. Extended Hopanoid Loss Reduces Bacterial Motility and Surface Attachment and Leads to Heterogeneity in Root Nodule Growth Kinetics in a Bradyrhizobium-Aeschynomene Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1415-1428. [PMID: 31170026 PMCID: PMC7583662 DOI: 10.1094/mpmi-04-19-0111-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hopanoids are steroid-like bacterial lipids that enhance membrane rigidity and promote bacterial growth under diverse stresses. Hopanoid biosynthesis genes are conserved in nitrogen-fixing plant symbionts, and we previously found that the extended (C35) class of hopanoids in Bradyrhizobium diazoefficiens are required for efficient symbiotic nitrogen fixation in the tropical legume host Aeschynomene afraspera. Here, we demonstrate that the nitrogen-fixation defect conferred by extended hopanoid loss can be fully explained by a reduction in root nodule sizes rather than per-bacteroid nitrogen-fixation levels. Using a single-nodule tracking approach to quantify A. afraspera nodule development, we provide a quantitative model of root nodule development in this host, uncovering both the baseline growth parameters for wild-type nodules and a surprising heterogeneity of extended hopanoid mutant developmental phenotypes. These phenotypes include a delay in root nodule initiation and the presence of a subpopulation of nodules with slow growth rates and low final volumes, which are correlated with reduced motility and surface attachment in vitro and lower bacteroid densities in planta, respectively. This work provides a quantitative reference point for understanding the phenotypic diversity of ineffective symbionts in A. afraspera and identifies specific developmental stages affected by extended hopanoid loss for future mechanistic work.
Collapse
Affiliation(s)
- Brittany J. Belin
- Division of Biology & Bioengineering, California Institute of Technology, Pasadena, CA, U.S.A
| | - Elise M. Tookmanian
- Division of Chemistry & Chemical Engineering, California Institute of Technology
| | - Jaime de Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, U.S.A
| | - Gerard C. L. Wong
- Division of Geological & Planetary Sciences, California Institute of Technology
| | - Dianne K. Newman
- Division of Biology & Bioengineering, California Institute of Technology, Pasadena, CA, U.S.A
- Division of Geological & Planetary Sciences, California Institute of Technology
| |
Collapse
|
10
|
Iturralde ET, Covelli JM, Alvarez F, Pérez-Giménez J, Arrese-Igor C, Lodeiro AR. Soybean-Nodulating Strains With Low Intrinsic Competitiveness for Nodulation, Good Symbiotic Performance, and Stress-Tolerance Isolated From Soybean-Cropped Soils in Argentina. Front Microbiol 2019; 10:1061. [PMID: 31139173 PMCID: PMC6527597 DOI: 10.3389/fmicb.2019.01061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
Soybean is the most important oilseed in the world, cropped in 120–130 million hectares each year. The three most important soybean producers are Argentina, Brazil, and United States, where soybean crops are routinely inoculated with symbiotic N2-fixing Bradyrhizobium spp. This extended inoculation gave rise to soybean-nodulating allochthonous populations (SNAPs) that compete against new inoculant for nodulation, thus impairing yield responses. Competitiveness depends on intrinsic factors contributed by genotype, extrinsic ones determined by growth and environmental conditions, and strain persistence in the soil. To assess these factors in Argentinean SNAPs, we studied 58 isolates from five sites of the main soybean cropping area. BOX-A1R DNA fingerprint distributed these isolates in 10 clades that paralleled the pHs of their original soils. By contrast, reference Bradyrhizobium spp. strains, including those used as soybean-inoculants, were confined to a single clade. More detailed characterization of a subset of 11 SNAP-isolates revealed that five were Bradyrhizobium japonicum, two Bradyrhizobium elkanii, two Rhizobium radiobacter (formerly Agrobacterium tumefaciens), one Bradyrhizobium diazoefficiens, and one Paenibacillus glycanilyticus-which did not nodulate when inoculated alone, and therefore was excluded from further characterization. The remaining subset of 10 SNAP-isolates was used for deeper characterization. All SNAP-isolates were aluminum- and heat-tolerant, and most of them were glyphosate-tolerant. Meanwhile, inoculant strains tested were sensitive to aluminum and glyphosate. In addition, all SNAP-isolates were motile to different degrees. Only three SNAP-isolates were deficient for N2-fixation, and none was intrinsically more competitive than the inoculant strain. These results are in contrast to the general belief that rhizobia from soil populations evolved as intrinsically more competitive for nodulation and less N2-fixing effective than inoculants strains. Shoot:root ratios, both as dry biomass and as total N, were highly correlated with leaf ureide contents, and therefore may be easy indicators of N2-fixing performance, suggesting that highly effective N2-fixing and well-adapted strains may be readily selected from SNAPs. In addition, intrinsic competitiveness of the inoculants strains seems already optimized against SNAP strains, and therefore our efforts to improve nodules occupation by inoculated strains should focus on the optimization of extrinsic competitiveness factors, such as inoculant formulation and inoculation technology.
Collapse
Affiliation(s)
- Esteban T Iturralde
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta M Covelli
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Florencia Alvarez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Cesar Arrese-Igor
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Aníbal R Lodeiro
- Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM), UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
11
|
Garrido-Sanz D, Redondo-Nieto M, Mongiardini E, Blanco-Romero E, Durán D, Quelas JI, Martin M, Rivilla R, Lodeiro AR, Althabegoiti MJ. Phylogenomic Analyses of Bradyrhizobium Reveal Uneven Distribution of the Lateral and Subpolar Flagellar Systems, Which Extends to Rhizobiales. Microorganisms 2019; 7:microorganisms7020050. [PMID: 30781830 PMCID: PMC6406911 DOI: 10.3390/microorganisms7020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Dual flagellar systems have been described in several bacterial genera, but the extent of their prevalence has not been fully explored. Bradyrhizobium diazoefficiens USDA 110T possesses two flagellar systems, the subpolar and the lateral flagella. The lateral flagellum of Bradyrhizobium displays no obvious role, since its performance is explained by cooperation with the subpolar flagellum. In contrast, the lateral flagellum is the only type of flagella present in the related Rhizobiaceae family. In this work, we have analyzed the phylogeny of the Bradyrhizobium genus by means of Genome-to-Genome Blast Distance Phylogeny (GBDP) and Average Nucleotide Identity (ANI) comparisons of 128 genomes and divided it into 13 phylogenomic groups. While all the Bradyrhizobium genomes encode the subpolar flagellum, none of them encodes only the lateral flagellum. The simultaneous presence of both flagella is exclusive of the B. japonicum phylogenomic group. Additionally, 292 Rhizobiales order genomes were analyzed and both flagellar systems are present together in only nine genera. Phylogenetic analysis of 150 representative Rhizobiales genomes revealed an uneven distribution of these flagellar systems. While genomes within and close to the Rhizobiaceae family only possess the lateral flagellum, the subpolar flagellum is exclusive of more early-diverging families, where certain genera also present both flagella.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Elías Mongiardini
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Juan I Quelas
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain.
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| | - M Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, UNLP y CCT-La Plata-CONICET, La Plata B1900, Argentina.
| |
Collapse
|
12
|
López SMY, Sánchez MDM, Pastorino GN, Franco MEE, García NT, Balatti PA. Nodulation and Delayed Nodule Senescence: Strategies of Two Bradyrhizobium Japonicum Isolates with High Capacity to Fix Nitrogen. Curr Microbiol 2018; 75:997-1005. [PMID: 29546586 DOI: 10.1007/s00284-018-1478-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
Abstract
The purpose of this work was to study further two Bradyrhizobium japonicum strains with high nitrogen-fixing capacity that were identified within a collection of approximately 200 isolates from the soils of Argentina. Nodulation and nitrogen-fixing capacity and the level of expression of regulatory as well as structural genes of nitrogen fixation and the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene of the isolates were compared with that of E109-inoculated plants. Both isolates of B. japonicum, 163 and 366, were highly efficient to fix nitrogen compared to commercial strain E109. Isolate 366 developed a higher number and larger biomass of nodules and because of this fixed more nitrogen. Isolate 163 developed the same number and nodule biomass than E109. However, nodules developed by isolate 163 had red interiors for a longer period, had a higher leghemoglobin content, and presented high levels of expression of acdS gene, that codes for an ACC deaminase. In conclusion, naturalized rhizobia of the soils of Argentina hold a diverse population that might be the source of highly active nitrogen-fixing rhizobia, a process that appears to be based on different strategies.
Collapse
Affiliation(s)
- Silvina M Y López
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigaciones de Fitopatología (CIDEFI - CICBA-UNLP), Buenos Aires, Argentina
| | - Ma Dolores Molina Sánchez
- Grupo de Ecología Genética de la Rizosfera, Dpto. Microbiología y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Graciela N Pastorino
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, La Plata, 1900, Argentina
| | - Mario E E Franco
- Centro de Investigaciones de Fitopatología (CIDEFI - CICBA-UNLP), Buenos Aires, Argentina
| | - Nicolás Toro García
- Grupo de Ecología Genética de la Rizosfera, Dpto. Microbiología y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pedro A Balatti
- Centro de Investigaciones de Fitopatología (CIDEFI - CICBA-UNLP), Buenos Aires, Argentina.
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, La Plata, 1900, Argentina.
| |
Collapse
|
13
|
Cogo C, Pérez-Giménez J, Rajeswari CB, Luna MF, Lodeiro AR. Induction by Bradyrhizobium diazoefficiens of Different Pathways for Growth in D-mannitol or L-arabinose Leading to Pronounced Differences in CO 2 Fixation, O 2 Consumption, and Lateral-Flagellum Production. Front Microbiol 2018; 9:1189. [PMID: 29922265 PMCID: PMC5996035 DOI: 10.3389/fmicb.2018.01189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, constitutes the basic input in one of the most prominent inoculant industries worldwide. This bacterium may be cultured with D-mannitol or L-arabinose as carbon-plus-energy source (C-source) with similar specific growth rates, but with higher biomass production with D-mannitol. To better understand the bacterium’s carbon metabolism, we analyzed, by liquid chromatography and tandem mass spectrometry (MS), the whole set of proteins obtained from cells grown on each C-source. Among 3,334 proteins identified, 266 were overproduced in D-mannitol and 237 in L-arabinose, but among these, only 22% from D-mannitol cultures and 35% from L-arabinose cultures were annotated with well defined functions. In the D-mannitol-differential pool we found 19 enzymes of the pentose-phosphate and Calvin–Benson–Bassham pathways and accordingly observed increased extracellular-polysaccharide production by D-mannitol grown bacteria in a CO2-enriched atmosphere. Moreover, poly-3-hydroxybutyrate biosynthesis was increased, suggesting a surplus of reducing power. In contrast, the L-arabinose-differential pool contained 11 enzymes of the L-2-keto-3-deoxyarabonate pathway, 4 enzymes for the synthesis of nicotinamide-adenine dinucleotide from aspartate, with those cultures having a threefold higher O2-consumption rate than the D-mannitol cultures. The stoichiometric balances deduced from the modeled pathways, however, resulted in similar O2 consumptions and ATP productions per C-mole of substrate. These results suggested higher maintenance-energy demands in L-arabinose, which energy may be used partly for flagella-driven motility. Since B. diazoefficiens produces the lateral-flagella system in only L-arabinose, we calculated the O2-consumption rates of a lafR::Km mutant devoid of lateral flagella cultured in L-arabinose or D-mannitol. Contrary to that of the wild-type, the O2-consumption rate of this mutant was similar on both C-sources, and accordingly outcompeted the wild-type in coculture, suggesting that the lateral flagella behaved as parasitic structures under these conditions. Proteomic data are available via ProteomeXchange with identifier PXD008263.
Collapse
Affiliation(s)
- Carolina Cogo
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina.,Departamento de Ciencias Básicas, Facultad de Ingeniería-UNLP, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - Chandrasekar B Rajeswari
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| | - María F Luna
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas-UNLP y CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
14
|
Webb BA, Compton KK, Del Campo JSM, Taylor D, Sobrado P, Scharf BE. Sinorhizobium meliloti Chemotaxis to Multiple Amino Acids Is Mediated by the Chemoreceptor McpU. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:770-777. [PMID: 28745538 DOI: 10.1094/mpmi-04-17-0096-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The legume symbiont Sinorhizobium meliloti is chemoattracted to compounds exuded by germinating seeds of its host alfalfa. This response is mainly mediated by the S. meliloti chemoreceptor McpU. McpU also has a prominent contribution in sensing a synthetic amino acid (aa) mixture mimicking the amounts and composition observed in seed exudate. Here, we used the hydrogel capillary assay to quantify chemotactic responses of S. meliloti to individual aa exuded by germinating alfalfa seeds and to define the role of McpU in this behavior. S. meliloti exhibited positive chemotaxis responses to all proteinogenic aa, except for aspartate, and to citrulline, cystine, gamma-aminobutyric acid, and ornithine. Wild-type responses were diverse in intensity, while a strain lacking mcpU displayed strongly diminished responses. Differential scanning fluorimetry demonstrated interaction of the purified periplasmic region of McpU (McpU-PR) with the aa, except glutamate and aspartate. We additionally tested organic acids and sugars, but there were no significant interactions with the McpU ligand-binding domain, except for citrate. Using ligand displacement, we confirmed the interaction of McpU-PR with aa representing strong and weak attractants. Our results show that S. meliloti McpU is a broad-range aa receptor mediating differential responses to individual attractants, which does not bind negatively charged aa.
Collapse
Affiliation(s)
- Benjamin A Webb
- 1 Virginia Tech, Department of Biological Sciences, Life Sciences I, Blacksburg, VA 24061, U.S.A.; and
| | - K Karl Compton
- 1 Virginia Tech, Department of Biological Sciences, Life Sciences I, Blacksburg, VA 24061, U.S.A.; and
| | | | - Doris Taylor
- 1 Virginia Tech, Department of Biological Sciences, Life Sciences I, Blacksburg, VA 24061, U.S.A.; and
| | - Pablo Sobrado
- 2 Virginia Tech, Department of Biochemistry, Fralin Life Science Institute
| | - Birgit E Scharf
- 1 Virginia Tech, Department of Biological Sciences, Life Sciences I, Blacksburg, VA 24061, U.S.A.; and
| |
Collapse
|
15
|
Mongiardini EJ, Quelas JI, Dardis C, Althabegoiti MJ, Lodeiro AR. Transcriptional Control of the Lateral-Flagellar Genes of Bradyrhizobium diazoefficiens. J Bacteriol 2017; 199:e00253-17. [PMID: 28533217 PMCID: PMC5512216 DOI: 10.1128/jb.00253-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium diazoefficiens, a soybean N2-fixing symbiont, possesses a dual flagellar system comprising a constitutive subpolar flagellum and inducible lateral flagella. Here, we analyzed the genomic organization and biosynthetic regulation of the lateral-flagellar genes. We found that these genes are located in a single genomic cluster, organized in two monocistronic transcriptional units and three operons, one possibly containing an internal transcription start site. Among the monocistronic units is blr6846, homologous to the class IB master regulators of flagellum synthesis in Brucella melitensis and Ensifer meliloti and required for the expression of all the lateral-flagellar genes except lafA2, whose locus encodes a single lateral flagellin. We therefore named blr6846 lafR (lateral-flagellar regulator). Despite its similarity to two-component response regulators and its possession of a phosphorylatable Asp residue, lafR behaved as an orphan response regulator by not requiring phosphorylation at this site. Among the genes induced by lafR is flbTL , a class III regulator. We observed different requirements for FlbTL in the synthesis of each flagellin subunit. Although the accumulation of lafA1, but not lafA2, transcripts required FlbTL, the production of both flagellin polypeptides required FlbTL Moreover, the regulation cascade of this lateral-flagellar regulon appeared to be not as strictly ordered as those found in other bacterial species.IMPORTANCE Bacterial motility seems essential for the free-living style in the environment, and therefore these microorganisms allocate a great deal of their energetic resources to the biosynthesis and functioning of flagella. Despite energetic costs, some bacterial species possess dual flagellar systems, one of which is a primary system normally polar or subpolar, and the other is a secondary, lateral system that is produced only under special circumstances. Bradyrhizobium diazoefficiens, an N2-fixing symbiont of soybean plants, possesses dual flagellar systems, including the lateral system that contributes to swimming in wet soil and competition for nodulation and is expressed under high energy availability, as well as under requirement for high torque by the flagella. The structural organization and transcriptional regulation of the 41 genes that comprise this secondary flagellar system seem adapted to adjust bacterial energy expenditures for motility to the soil's environmental dynamics.
Collapse
Affiliation(s)
- Elías J Mongiardini
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina
| | - J Ignacio Quelas
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina
| | - Carolina Dardis
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina
| | - M Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata, Argentina
| |
Collapse
|
16
|
Webb BA, Karl Compton K, Castañeda Saldaña R, Arapov TD, Keith Ray W, Helm RF, Scharf BE. Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX. Mol Microbiol 2016; 103:333-346. [PMID: 27748981 DOI: 10.1111/mmi.13561] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/27/2022]
Abstract
The bacterium Sinorhizobium meliloti is attracted to seed exudates of its host plant alfalfa (Medicago sativa). Since quaternary ammonium compounds (QACs) are exuded by germinating seeds, we assayed chemotaxis of S. meliloti towards betonicine, choline, glycine betaine, stachydrine and trigonelline. The wild type displayed a positive response to all QACs. Using LC-MS, we determined that each germinating alfalfa seed exuded QACs in the nanogram range. Compared to the closely related nonhost species, spotted medic (Medicago arabica), unique profiles were released. Further assessments of single chemoreceptor deletion strains revealed that an mcpX deletion strain displayed little to no response to these compounds. Differential scanning fluorimetry showed interaction of the isolated periplasmic region of McpX (McpXPR and McpX34-306 ) with QACs. Isothermal titration calorimetry experiments revealed tight binding to McpXPR with dissociation constants (Kd ) in the nanomolar range for choline and glycine betaine, micromolar Kd for stachydrine and trigonelline and a Kd in the millimolar range for betonicine. Our discovery of S. meliloti chemotaxis to plant-derived QACs adds another role to this group of compounds, which are known to serve as nutrient sources, osmoprotectants and cell-to-cell signalling molecules. This is the first report of a chemoreceptor that mediates QACs taxis through direct binding.
Collapse
Affiliation(s)
- Benjamin A Webb
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - K Karl Compton
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Timofey D Arapov
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - W Keith Ray
- Department of Biochemistry, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Richard F Helm
- Department of Biochemistry, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
17
|
Torres Tejerizo G, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schlüter A, Pühler A, Del Papa MF, Lagares A, Martínez-Romero E, Pistorio M. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L). Int J Syst Evol Microbiol 2016; 66:4451-4457. [DOI: 10.1099/ijsem.0.001373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gonzalo Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
- CeBiTec, Bielefeld Universität, Bielefeld, Germany
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas Av. Universidad 1001, Col. Chamilpa. 62210 Cuernavaca, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas Av. Universidad 1001, Col. Chamilpa. 62210 Cuernavaca, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - María Julia Althabegoiti
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Juliet Fernanda Nilsson
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | | | | | | | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas Av. Universidad 1001, Col. Chamilpa. 62210 Cuernavaca, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
18
|
Swimming performance of Bradyrhizobium diazoefficiens is an emergent property of its two flagellar systems. Sci Rep 2016; 6:23841. [PMID: 27053439 PMCID: PMC4823718 DOI: 10.1038/srep23841] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/16/2016] [Indexed: 01/05/2023] Open
Abstract
Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.
Collapse
|
19
|
Webb BA, Helm RF, Scharf BE. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:231-9. [PMID: 26713349 DOI: 10.1094/mpmi-12-15-0264-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant seeds and roots exude a spectrum of molecules into the soil that attract bacteria to the spermosphere and rhizosphere, respectively. The alfalfa symbiont Sinorhizobium meliloti utilizes eight chemoreceptors (McpT to McpZ and IcpA) to mediate chemotaxis. Using a modified hydrogel capillary chemotaxis assay that allows data quantification and larger throughput screening, we defined the role of S. meliloti chemoreceptors in sensing its host, Medicago sativa, and a closely related nonhost, Medicago arabica. S. meliloti wild type and most single-deletion strains displayed comparable chemotaxis responses to host or nonhost seed exudate. However, while the mcpZ mutant responded like wild type to M. sativa exudate, its reaction to M. arabica exudate was reduced by 80%. Even though the amino acid (AA) amounts released by both plant species were similar, synthetic AA mixtures that matched exudate profiles contributed differentially to the S. meliloti wild-type response to M. sativa (23%) and M. arabica (37%) exudates, with McpU identified as the most important chemoreceptor for AA. Our results show that S. meliloti is equally attracted to host and nonhost legumes; however, AA play a greater role in attraction to M. arabica than to M. sativa, with McpZ being specifically important in sensing M. arabica.
Collapse
Affiliation(s)
| | - Richard F Helm
- 2 Virginia Tech Department of Biochemistry, Life Sciences I, Blacksburg, VA 24061, U.S.A
| | | |
Collapse
|
20
|
Lodeiro AR. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp]. Rev Argent Microbiol 2015; 47:261-73. [PMID: 26364183 DOI: 10.1016/j.ram.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
Abstract
With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots.
Collapse
Affiliation(s)
- Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Facultad de Ciencias Exactas, UNLP y CCT-La Plata CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 2014; 80:3404-15. [PMID: 24657863 DOI: 10.1128/aem.00115-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.
Collapse
|
22
|
Pérez-Giménez J, Lodeiro AR. Two effects of combined nitrogen on the adhesion of Rhizobium etli to bean roots. Symbiosis 2013. [DOI: 10.1007/s13199-013-0229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Covelli JM, Althabegoiti MJ, López MF, Lodeiro AR. Swarming motility in Bradyrhizobium japonicum. Res Microbiol 2012; 164:136-44. [PMID: 23124116 DOI: 10.1016/j.resmic.2012.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022]
Abstract
Flagellar-driven bacterial motility is an important trait for colonization of natural environments. Bradyrhizobium japonicum is a soil species that possesses two different flagellar systems: one subpolar and the other lateral, each with a filament formed by a different set of flagellins. While synthesis of subpolar flagellins is constitutive, translation of lateral flagellins was detected in rhizobia grown with l-arabinose, but not with d-mannitol as sole carbon source, independently of whether bacteria were in liquid or semisolid medium. We characterized swarming of B. japonicum in semisolid medium and found that this motility was faster with l-arabinose than with d-mannitol. By using mutants with deletions in each flagellin set, we evaluated the contribution of each flagellum system to swarming in semisolid culture media, and in soil. Mutants devoid of either of the flagella were affected in swarming in culture media, with this impairment being stronger for mutants without lateral flagella. In sterile soil at 100% or 80% field capacity, flagellar-driven motility of mutants able to swim but impaired in swarming was similar to wild type, indicating that swimming was the predominant movement here.
Collapse
Affiliation(s)
- Julieta Mariana Covelli
- Instituto de Biotecnología y Biología Molecular (IBBM), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
24
|
Proteomic Study on Two Bradyrhizobium japonicum Strains with Different Competitivenesses for Nodulation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60096-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Althabegoiti MJ, Covelli JM, Pérez-Giménez J, Quelas JI, Mongiardini EJ, López MF, López-García SL, Lodeiro AR. Analysis of the role of the two flagella of Bradyrhizobium japonicum in competition for nodulation of soybean. FEMS Microbiol Lett 2011; 319:133-9. [PMID: 21470300 DOI: 10.1111/j.1574-6968.2011.02280.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bradyrhizobium japonicum has two types of flagella. One has thin filaments consisting of the 33-kDa flagellins FliCI and FliCII (FliCI-II) and the other has thick filaments consisting of the 65-kDa flagellins FliC1, FliC2, FliC3, and FliC4 (FliC1-4). To investigate the roles of each flagellum in competition for nodulation, we obtained mutants deleted in fliCI-II and/or fliC1-4 in the genomic backgrounds of two derivatives from the reference strain USDA 110: the streptomycin-resistant derivative LP 3004 and its more motile derivative LP 3008. All mutations diminished swimming motility. When each mutant was co-inoculated with the parental strain on soybean plants cultivated in vermiculite either at field capacity or flooded, their competitiveness differed according to the flagellin altered. ΔfliCI-II mutants were more competitive, occupying 64-80% of the nodules, while ΔfliC1-4 mutants occupied 45-49% of the nodules. Occupation by the nonmotile double mutant decreased from 55% to 11% as the water content of the vermiculite increased from 85% to 95% field capacity to flooding. These results indicate that the influence of motility on competitiveness depended on the water status of the rooting substrate.
Collapse
Affiliation(s)
- Maria Julia Althabegoiti
- Departamento de Ciencias Biológicas, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|