1
|
Qian M, Zhou X, Xu T, Li M, Yang Z, Han X. Evaluation of Potential Probiotic Properties of Limosilactobacillus fermentum Derived from Piglet Feces and Influence on the Healthy and E. coli-Challenged Porcine Intestine. Microorganisms 2023; 11:microorganisms11041055. [PMID: 37110478 PMCID: PMC10142273 DOI: 10.3390/microorganisms11041055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, we evaluated the probiotic properties of Limosilactobacillus fermentum strains (FL1, FL2, FL3, FL4) isolated from feces of healthy piglets. The in vitro auto-aggregation, hydrophobicity, biofilm-forming capacity, survival in the gastrointestinal tract, antimicrobial activity and anti-oxidation capacity were evaluated. Four strains were resistant to simulated gastrointestinal conditions, including low pH, pepsin, trypsin and bile salts. They also maintained strong self-aggregation and cell surface hydrophobicity. Limosilactobacillus fermentum FL4, which had the strongest adhesion ability and antimicrobial effect on Enterotoxigenic Escherichia coli K88 (ETEC K88), was then tested in porcine intestinal organoid models. The in vitro experiments in basal-out and apical-out organoids demonstrated that L. fermentum FL4 adhered to the apical surfaces more efficiently than basolateral surfaces, had the ability to activate the Wnt/β-catenin pathway to protect the mucosal barrier integrity, stimulated the proliferation and differentiation of the intestinal epithelium, and repaired ETEC K88-induced damage. Moreover, L. fermentum FL4 inhibited inflammatory responses induced by ETEC K88 through the reduced expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and higher levels of anti-inflammatory cytokines (TGF-β and IL-10). These results show that L. fermentum FL4 isolated from feces of healthy Tunchang piglets has the potential to be used as an anti-inflammatory probiotic and for mitigation of intestinal damage in piglets.
Collapse
Affiliation(s)
- Mengqi Qian
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Meng Li
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya 572000, China
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Comparative Genomics of Lentilactobacillus parabuchneri isolated from dairy, KEM complex, Makgeolli, and Saliva Microbiomes. BMC Genomics 2022; 23:803. [PMID: 36471243 PMCID: PMC9724434 DOI: 10.1186/s12864-022-09053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lentilactobacillus parabuchneri is of particular concern in fermented food bioprocessing due to causing unwanted gas formation, cracks, and off-flavor in fermented dairy foods. This species is also a known culprit of histamine poisonings because of decarboxylating histidine to histamine in ripening cheese. Twenty-eight genomes in NCBI GenBank were evaluated via comparative analysis to determine genomic diversity within this species and identify potential avenues for reducing health associated risks and economic losses in the food industry caused by these organisms. RESULT Core genome-based phylogenetic analysis revealed four distinct major clades. Eight dairy isolates, two strains from an unknown source, and a saliva isolate formed the first clade. Three out of five strains clustered on clade 2 belonged to dairy, and the remaining two strains were isolated from the makgeolli and Korean effective microorganisms (KEM) complex. The third and fourth clade members were isolated from Tete de Moine and dairy-associated niches, respectively. Whole genome analysis on twenty-eight genomes showed ~ 40% of all CDS were conserved across entire strains proposing a considerable diversity among L. parabuchneri strains analyzed. After assigning CDS to their corresponding function, ~ 79% of all strains were predicted to carry putative intact prophages, and ~ 43% of the strains harbored at least one plasmid; however, all the strains were predicted to encode genomic island, insertion sequence, and CRISPR-Cas system. A type I-E CRISPR-Cas subgroup was identified in all the strains, with the exception of DSM15352, which carried a type II-A CRISPR-Cas system. Twenty strains were predicted to encode histidine decarboxylase gene cluster that belongs to not only dairy but also saliva, KEM complex, and unknown source. No bacteriocin-encoding gene(s) or antibiotic resistome was found in any of the L. parabuchneri strains screened. CONCLUSION The findings of the present work provide in-depth knowledge of the genomics of L. parabuchneri by comparing twenty-eight genomes available to date. For example, the hdc gene cluster was generally reported in cheese isolates; however, our findings in the current work indicated that it could also be encoded in those strains isolated from saliva, KEM complex, and unknown source. We think prophages are critical mobile elements of L. parabuchneri genomes that could pave the way for developing novel tools to reduce the occurrence of this unwanted species in the food industry.
Collapse
|
3
|
Bajrami D, Fischer S, Barth H, Sarquis MA, Ladero VM, Fernández M, Sportelli MC, Cioffi N, Kranz C, Mizaikoff B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022; 8:92. [PMID: 36402858 PMCID: PMC9675856 DOI: 10.1038/s41522-022-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - María A Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria C Sportelli
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. FERMENTATION 2022. [DOI: 10.3390/fermentation8100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Galotyri is the most popular traditional Greek PDO soft acid-curd cheese. This study compared the microbial numbers and types and characterized the lactic acid bacteria (LAB) biota of two artisan-type Galotyri PDO cheese varieties, one marketed fresh (Brand-K) and the other ripened (Brand-Z). Two retail batches of each cheese variety were analyzed, and a total of 102 LAB isolates were biochemically identified. LAB (7.2–9.3 log CFU/g) prevailed in all cheeses, followed by yeasts (5.8–6.8 log CFU/g). Typical starter strains of Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant species in all batches. However, the fresh Brand-K cheeses had 1–3 log units higher thermophilic starter LAB counts than the ripened Brand-Z cheeses, which contained a more diverse viable LAB biota comprising Lacticaseibacillus paracasei, Leuconostocmesenteroides, Lentilactobacillus (L. diolivorans, L. kefiri, L. hilgardii), Pediococcusinopinatus/parvulus, few spontaneous nonstarter thermophilic streptococci and lactobacilli, and Enterococcus faecium and E. faecalis at higher subdominant levels.Conversely, the fresh Brand-K cheeses were enriched in members of the Lactiplantibacillus plantarum group; other LAB species were sporadically isolated, including Lactococcus lactis. All retail cheeses were safe (pH 3.9–4.0). No Salmonella spp. or Listeria monocytogenes were detected in 25-g samples by culture enrichment; however, Listeria innocua and coagulase-positive staphylococci (850 CFU/g) survived in one ripened batch. Gram-negative bacteria were <100 CFU/g in all cheeses. In conclusion, ripening reduced the starter LAB viability but increased the nonstarter LAB species diversity in the present Galotyri PDO market cheeses.
Collapse
|
5
|
SO JS, OH K, SHIN Y. Growth stimulation of Clostridium butyricum in the presence of Lactobacillus brevis JL16 and Lactobacillus parabuchneri MH44. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.50521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - YuJin SHIN
- Inha University, Republic of Korea; Sungkyunkwan University, Republic of Korea
| |
Collapse
|
6
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
7
|
Wechsler D, Irmler S, Berthoud H, Portmann R, Badertscher R, Bisig W, Schafroth K, Fröhlich-Wyder MT. Influence of the inoculum level of Lactobacillus parabuchneri in vat milk and of the cheese-making conditions on histamine formation during ripening. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Aladeboyeje OT, Sanli NO, Buyuk U. Evaluation of the Antimicrobial Efficacy of some Fermented Traditional Turkish Beverages with Probiotic Potentials. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651322x16388083409013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Turkey is a home country for a good number of fermented beverages derived from milk, cereals, fruits and vegetables, and several studies have reported the probiotic potentiality of these beverages. Probiotics, otherwise known as beneficial microorganisms possess the ability to exert antimicrobial effects, which is one of the most important selection criteria for their use in commercial products. In the current study, the antimicrobial activities of potential probiotic bacteria isolated from five fermented traditional Turkish beverages (boza, kefir, ayran, shalgam juice and hardaliye) were evaluated. The bacterial isolates were morphologically characterized and genotypically identified by 16S rRNA gene sequence analysis. The antimicrobial effects of the isolates against selected human pathogens were assessed using spot-on-the-lawn and agar well diffusion assays. Eighteen of the twenty-two strains displayed varying degrees of antagonism against the tested pathogens. Amongst the isolates, the strongest antimicrobial effects were exhibited by strains from boza, kefir and shalgam which can be attributed to their greater microbiota diversity. Strain specificity in the activities of the obtained isolates and specificity with the different indicator pathogens tested was observed. The impressive antimicrobial effects exhibited by boza, kefir and shalgam isolates offer a promising health benefit to consumers of these fermented probiotic products.
Collapse
Affiliation(s)
| | - Nazmiye Ozlem Sanli
- Section of Biotechnology, Department of Biology, İstanbul University, İstanbul, 34126, Turkey
| | - Umut Buyuk
- Hibrigen Biyoteknoloji, Tübitak MAM Teknoloji Serbest Bölge Şubesi Barış Mahallesi 5002 Sk. Yeni Tek. Binası A Blok 4 A/101 Gebze/Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey
| |
Collapse
|
9
|
Screening and Identification of New Types of Exopolysaccharides-Producing Lactic Acid in the Inner Mongolia Dairy Products. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2019. [DOI: 10.2478/aucft-2019-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Exopolysaccharides (EPS) is a type of polysaccharide produced by lactic acid bacteria (LAB) that can be directly used in foods to make the products more excellent. Therefore, batch studies were performed to explore the effect of different LAB on the production of EPS and antioxidant activity. Five strains with high EPS yield and antioxidant activity were screened out from 66 strains isolated from Tibetan dairy products. The results show that EPS produntion of the five strains (B55, B62, B30, 7830 and K2) were 110.66, 145.48, 132.78, 122.11 and 111.72 mg·L−1, respectively, and they have a higher DPPH free radical scavenging activity (56.29, 66.43, 62.94, 68.71, 61.87%). Five LAB strains were identified and classified based on screening, purification and 16S rDNA sequences. Molecular characterization based on partial sequence 16S rDNA homology confirmed the initial identification as Lactobacillus fermentum (B55, B62), Lactobacillus plantarum (7830), Pediococcus acidilactici (B30) and Lactobacillus helveticus (K2).
Collapse
|
10
|
Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr 2019; 60:3387-3399. [PMID: 31729242 DOI: 10.1080/10408398.2019.1688250] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lactic acid-producing bacteria are the most commonly used probiotics that play an important role in protecting the host against harmful microorganisms, strengthening the host immune system, improving feed digestibility, and reducing metabolic disorders. Lactobacillus fermentum (Lb. fermentum) is a Gram-positive bacterium belonging to Lactobacillus genus, and many reportedly to enhance the immunologic response as well as prevent community-acquired gastrointestinal and upper respiratory infections. Additionally, Lb. fermentum strains produce diverse and potent antimicrobial peptides, which can be applied as food preservative agents or as alternatives to antibiotics. Further functions attributed to probiotic Lb. fermentum strains are their abilities to decrease the level of blood stream cholesterol (as cholesterol-lowering agents) and to potentially help prevent alcoholic liver disease and colorectal cancer among humans. Finally, Lb. fermentum is a key microorganism in sourdough technology, contributing to flavor, texture, or health-promoting dough ingredients, and has recently been used to develop new foods stuffs such as fortified and functional foods with beneficial attributes for human health. Development of such new foodstuffs are currently taking important proportions of the food industry market. Furthermore, an increasing awareness of the consumers prompts the food-makers to implement alternative environmental friendly solutions in the production processes and/or suitable biological alternative to limit the use of antibiotics in feed and food. Here, we give an account on the application of Lb. fermentum strains in the biomedical and food preservation fields, with a focus on probiotic features such as bacteriocin production. We also summarize the use of Lb. fermentum as cell factories with the aim to improve the efficacy and health value of functional food.
Collapse
Affiliation(s)
- Karim Naghmouchi
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Al Baha University, Saudi Arabia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, LR01ES05 Biochimie et Biotechnologie, Tunis, Tunisie
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Giuseppe Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Bruce S Seal
- Biology Program, Oregon State University Cascades, Bend, Oregon, USA
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| |
Collapse
|
11
|
Vladimír D, Miloslava K, Markéta M, Jaroslava H, Petr R. Microbial diversity of Livanjski cheese with the emphasis on lactic acid bacteria based on culture‐dependent and sequencing method. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dráb Vladimír
- Dairy Research Institute Ltd. Ke Dvoru 12a Prague 160 00 Czech Republic
| | - Kavková Miloslava
- Dairy Research Institute Ltd. Ke Dvoru 12a Prague 160 00 Czech Republic
| | | | | | - Roubal Petr
- Dairy Research Institute Ltd. Ke Dvoru 12a Prague 160 00 Czech Republic
| |
Collapse
|
12
|
Decimo M, Quattrini M, Ricci G, Fortina MG, Brasca M, Silvetti T, Manini F, Erba D, Criscuoli F, Casiraghi MC. Evaluation of microbial consortia and chemical changes in spontaneous maize bran fermentation. AMB Express 2017; 7:205. [PMID: 29147976 PMCID: PMC5689044 DOI: 10.1186/s13568-017-0506-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022] Open
Abstract
Sustainable exploitation of agro-industrial by-products has attracted great interest in cereal bran valorization. In this research, a polyphasic approach has been carried out to characterize maize bran at microbiological and chemical level during a sourdough like fermentation process, in order to enhance its technological and nutritional properties. Autochthonous microbiota was isolated at different refreshment steps and subjected to identification and molecular characterization. Fermentation was characterized by a rapid increase in lactic acid bacteria and yeasts, with a co-dominance, at the initial stage, of Weissella spp., Pediococcus spp. and Wickerhamomyces anomalus. At the end of the fermentation, a natural selection was produced, with the prevalence of Lactobacillus plantarum, Lactobacillus brevis and Kazachstania unispora. This is the first time that a specific association between LAB and yeasts is reported, during the maize bran fermentation process. Enzymatic activities related to this microbial consortium promoted a "destructuration" of the fiber fraction, an increase in soluble dietary fiber and a reduction of phytic acid content. Our data also evidenced a noticeable increment in ferulic acid. The results obtained indicate that fermentation processes represent an efficient biotechnological approach to increase nutritional and functional potential of maize bran. Moreover, the characterization of microbiota involved in natural fermentation process will allow the selection of specific biotypes, with appropriate metabolic and enzymatic activities, to conduct "tailored" fermentation processes and improve brans or whole-meal flours from both nutritional and technological points of view.
Collapse
Affiliation(s)
- Marilù Decimo
- Institute of Sciences of Food Production, National Research Council of Italy, Milan, Italy
| | - Mattia Quattrini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Giovanni Ricci
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Maria Grazia Fortina
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, Milan, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council of Italy, Milan, Italy
| | - Federica Manini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Daniela Erba
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Franca Criscuoli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
13
|
Badertscher R, Freiburghaus C, Wechsler D, Irmler S. Validated method for the determination of propane-1,2-diol, butane-2,3-diol, and propane-1,3-diol in cheese and bacterial cultures using phenylboronic esterification and GC–MS. Food Chem 2017; 230:372-377. [DOI: 10.1016/j.foodchem.2017.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/24/2017] [Accepted: 03/11/2017] [Indexed: 12/01/2022]
|
14
|
Prevalence and diversity of histamine-forming Lactobacillus parabuchneri strains in raw milk and cheese – A case study. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Diaz M, del Rio B, Sanchez-Llana E, Ladero V, Redruello B, Fernández M, Martin MC, Alvarez MA. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiol 2016; 59:85-91. [DOI: 10.1016/j.fm.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 11/29/2022]
|
16
|
|
17
|
Influence of low pH on the metabolic activity of Lactobacillus buchneri and Lactobacillus parabuchneri strains in Tilsit-type model cheese. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13594-015-0238-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Koirala R, Ricci G, Taverniti V, Ferrario C, Malla R, Shrestha S, Fortina MG, Guglielmetti S. Isolation and molecular characterization of lactobacilli from traditional fermented Dahi produced at different altitudes in Nepal. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13594-014-0167-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Fröhlich-Wyder MT, Guggisberg D, Badertscher R, Wechsler D, Wittwer A, Irmler S. The effect of Lactobacillus buchneri and Lactobacillus parabuchneri on the eye formation of semi-hard cheese. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Abstract
Twelve Lactobacillus isolates from Brazilian starter-free ovine cheeses were evaluated for their probiotic potential. The strains were identified by 16S rDNA sequencing as Lactobacillus plantarum (7), Lb. brevis (2), Lb. casei (2) and Lb. parabuchneri (1). All strains showed variable resistance to gastric juices and relative tolerance to pancreatin and bile salts. Only five strains of Lb. plantarum could not deconjugate the sodium salt of taurodeoxycholic acid. Autoaggregation ability after 24 h was above 50% and hydrophobicity was higher than 60% for most strains. All lactobacilli could inhibit linolenic acid oxidation, except Lb. parabuchneri strain, whereas none of them could scavenge DPPH radical. β-Galactosidase activity ranged from 47·7 to 2503 Miller units. Inhibition of food pathogens Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella typhimurium was demonstrated and the production of organic acids could be associated with this effect. The Lactobacillus strains from Brazilian regional ovine cheese showed interesting functional characteristics, mainly the strains Lb. brevis SM-B and Lb. plantarum SM-I. Both presented high acid tolerance. In addition, Lb. brevis SM-B also displayed remarkable antioxidant activity and Lb. plantarum SM-I was the highest β-galactosidase producer, exhibited high autoaggregation and hydrophobicity properties.
Collapse
|
21
|
Sekwati-Monang B, Valcheva R, Gänzle MG. Microbial ecology of sorghum sourdoughs: Effect of substrate supply and phenolic compounds on composition of fermentation microbiota. Int J Food Microbiol 2012; 159:240-6. [DOI: 10.1016/j.ijfoodmicro.2012.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/07/2012] [Accepted: 09/19/2012] [Indexed: 02/06/2023]
|
22
|
Sohier D, Jamet E, Le Dizes AS, Dizin M, Pavan S, Postollec F, Coton E. Polyphasic approach for quantitative analysis of obligately heterofermentative Lactobacillus species in cheese. Food Microbiol 2012; 31:271-7. [DOI: 10.1016/j.fm.2012.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 01/05/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
23
|
Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Curr Microbiol 2011; 62:1081-9. [PMID: 21212956 DOI: 10.1007/s00284-010-9856-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely.
Collapse
|
24
|
Characterization of non-starter lactic acid bacteria in traditionally produced home-made Radan cheese during ripening. ARCH BIOL SCI 2011. [DOI: 10.2298/abs1101001j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Two hundred thirteen non-starter lactic acid bacteria isolated from Radan
cheese during ripening were identified with both a classical biochemical test
and rep-PCR with (GTG)5 primer. For most isolates, which belong to the
Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus
plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic
identification was in good agreement with rep-PCR identification. Lactococeus
lactis subsp. lactis, Enterococcus faecium and subspecies from the
Lenconostoc mesenteroides group were the dominant population of lactic acid
bacteria in cheese until 10 days of ripening and only one Streptococcus
thermophilus strain was isolated from the 5-day-old cheese sample. As
ripening progressed, Lactobacillus plantarum became the predominant species
together with the group of heterofermentative species of lactobacilli that
could not be precisely identified with rep-PCR.
Collapse
|
25
|
Coton M, Romano A, Spano G, Ziegler K, Vetrana C, Desmarais C, Lonvaud-Funel A, Lucas P, Coton E. Occurrence of biogenic amine-forming lactic acid bacteria in wine and cider. Food Microbiol 2010; 27:1078-85. [PMID: 20832688 DOI: 10.1016/j.fm.2010.07.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 06/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
A collection of 810 lactic acid bacteria (LAB) strains isolated from wine and cider was screened for potential biogenic amine (BA) producers by combining molecular and phenotypic approaches. A newly developed multiplex PCR method allowed for the simultaneous detection of four genes involved in the production of histamine (histidine decarboxylase, hdc), tyramine (tyrosine decarboxylase, tyrdc) and putrescine (via either ornithine decarboxylase, odc, or agmatine deiminase, agdi) while TLC and HPLC analysis allowed for BA-production determination. One hundred and fifty-eight LAB strains were monitored by the molecular/phenotypic double approach and revealed a good correlation between genotypic and phenotypic data. Eighteen per cent of the tested strains were positive for at least one BA target gene with up to three detected simultaneously, in particular amongst Lactobacillus brevis and Lactobacillus hilgardii isolates for the tyrdc and agdi genes. The most frequent gene corresponded to the agdi gene detected in 112 strains (14% of all LAB strains) of 10 different LAB species. The tyrdc gene was detected in 67 strains represented by 7 different LAB species (8% overall), especially those isolated from wine. Lower levels of hdc(+) (2% of strains) and especially odc(+) (0.5% of strains) strains were observed. Interestingly, species that have never been described to carry BA-producing pathway genes were identified in this study. Furthermore, only one cadaverine-producer was detected and corresponded to Lactobacillus 30a, a collection strain not found in fermented beverages, although cadaverine is commonly detected in wines.
Collapse
Affiliation(s)
- M Coton
- ADRIA Normandie, Villers-Bocage, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Colombo F, Borgo F, Fortina MG. Genotypic characterization of non starter lactic acid bacteria involved in the ripening of artisanal Bitto PDO cheese. J Basic Microbiol 2009; 49:521-30. [DOI: 10.1002/jobm.200800381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. Appl Environ Microbiol 2009; 75:6488-95. [PMID: 19684161 DOI: 10.1128/aem.01055-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays.
Collapse
|