1
|
Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:161-185. [DOI: 10.1007/978-981-13-9791-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2
|
Ball SR, Kwan AH, Sunde M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:29-51. [DOI: 10.1007/82_2019_186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Mesarich CH, Ӧkmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M, Mihajlovski A, Collemare J, Hunziker L, Deng CH, van der Burgt A, Beenen HG, Templeton MD, Bradshaw RE, de Wit PJGM. Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:145-162. [PMID: 29144204 DOI: 10.1094/mpmi-05-17-0114-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.
Collapse
Affiliation(s)
- Carl H Mesarich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 2 Laboratory of Molecular Plant Pathology, Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- 3 Bio-Protection Research Centre, New Zealand
| | - Bilal Ӧkmen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hanna Rovenich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott A Griffiths
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Changchun Wang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Mansoor Karimi Jashni
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 5 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, P.O. Box 19395‒1454, Tehran, Iran
| | - Aleksandar Mihajlovski
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jérôme Collemare
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lukas Hunziker
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Cecilia H Deng
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Ate van der Burgt
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henriek G Beenen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthew D Templeton
- 3 Bio-Protection Research Centre, New Zealand
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Rosie E Bradshaw
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Pierre J G M de Wit
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 8 Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
4
|
|
5
|
Chettri P, Bradshaw RE. LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum. Fungal Genet Biol 2016; 97:24-32. [PMID: 27818262 DOI: 10.1016/j.fgb.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023]
Abstract
In filamentous fungi both pathway-specific and global regulators regulate genes involved in the biosynthesis of secondary metabolites. LaeA is a global regulator that was named for its mutant phenotype, loss of aflR expression, due to its effect on the aflatoxin-pathway regulator AflR in Aspergillus spp. The pine needle pathogen Dothistroma septosporum produces a polyketide virulence factor, dothistromin, that is chemically related to aflatoxin and whose pathway genes are also regulated by an ortholog of AflR. However, dothistromin biosynthesis is distinctive because it is switched on during early (rather than late) exponential growth phase and the genes are dispersed in six loci across one chromosome instead of being clustered. It was therefore of interest to determine whether the function of the global regulator LaeA is conserved in D. septosporum. To address this question, a LaeA ortholog (DsLaeA) was identified and its function analyzed in D. septosporum. In contrast to aflatoxin production in Aspergillus spp., deletion of DsLaeA resulted in enhanced dothistromin production and increased expression of the pathway regulatory gene DsAflR. Although expression of other putative secondary metabolite genes in D. septosporum showed a range of different responses to loss of DsLaeA function, thin layer chromatography revealed increased levels of a previously unknown metabolite in DsLaeA mutants. In addition, these mutants exhibited reduced asexual sporulation, germination and hydrophobicity. Our data suggest that although the developmental regulatory role of DsLaeA is conserved, its role in the regulation of secondary metabolism differs from that of LaeA in A. nidulans and appears to be species specific. This study provides a step towards understanding fundamental differences in regulation of clustered and fragmented groups of secondary metabolite genes that may shed light on understanding functional adaptation in secondary metabolism.
Collapse
Affiliation(s)
- Pranav Chettri
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand.
| |
Collapse
|
6
|
Bradshaw RE, Guo Y, Sim AD, Kabir MS, Chettri P, Ozturk IK, Hunziker L, Ganley RJ, Cox MP. Genome-wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata. MOLECULAR PLANT PATHOLOGY 2016; 17:210-24. [PMID: 25919703 PMCID: PMC4746707 DOI: 10.1111/mpp.12273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present genome-wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal-specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up-regulation of genes encoding fungal cell wall-modifying enzymes and signalling proteins. Later necrotrophic stages show the up-regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in-depth through-time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host.
Collapse
Affiliation(s)
- Rosie E Bradshaw
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Yanan Guo
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Andre D Sim
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - M Shahjahan Kabir
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Pranav Chettri
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Ibrahim K Ozturk
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Lukas Hunziker
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Rebecca J Ganley
- Scion, NZ Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Murray P Cox
- Bio-Protection Research Centre, Institute of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
7
|
Grünbacher A, Throm T, Seidel C, Gutt B, Röhrig J, Strunk T, Vincze P, Walheim S, Schimmel T, Wenzel W, Fischer R. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS One 2014; 9:e94546. [PMID: 24722460 PMCID: PMC3983194 DOI: 10.1371/journal.pone.0094546] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 03/18/2014] [Indexed: 01/13/2023] Open
Abstract
Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.
Collapse
Affiliation(s)
- André Grünbacher
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
| | - Tanja Throm
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
| | - Constanze Seidel
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
| | - Beatrice Gutt
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
| | - Julian Röhrig
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
| | - Timo Strunk
- KIT - Campus North, Institute of Nanotechnolgy (INT), Eggenstein-Leopoldshafen, Germany
| | - Paul Vincze
- KIT - Campus North, Institute of Applied Physics and INT, Eggenstein-Leopoldshafen, Germany
| | - Stefan Walheim
- KIT - Campus North, Institute of Applied Physics and INT, Eggenstein-Leopoldshafen, Germany
| | - Thomas Schimmel
- KIT - Campus North, Institute of Applied Physics and INT, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- KIT - Campus North, Institute of Nanotechnolgy (INT), Eggenstein-Leopoldshafen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - Campus South, Institute for Applied Biosciences (IAB), Department of Microbiology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
8
|
The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet 2012; 8:e1003088. [PMID: 23209441 PMCID: PMC3510045 DOI: 10.1371/journal.pgen.1003088] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 09/19/2012] [Indexed: 01/07/2023] Open
Abstract
We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.
Collapse
|
9
|
Zhang S, Xia YX, Kim B, Keyhani NO. Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana. Mol Microbiol 2011; 80:811-26. [DOI: 10.1111/j.1365-2958.2011.07613.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Mosbach A, Leroch M, Mendgen KW, Hahn M. Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea. BMC Microbiol 2011; 11:10. [PMID: 21232149 PMCID: PMC3032640 DOI: 10.1186/1471-2180-11-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hydrophobins are small, cysteine rich, surface active proteins secreted by filamentous fungi, forming hydrophobic layers on the walls of aerial mycelia and spores. Hydrophobin mutants in a variety of fungi have been described to show 'easily wettable' phenotypes, indicating that hydrophobins play a general role in conferring surface hydrophobicity to aerial hyphae and spores. RESULTS In the genome of the grey mould fungus Botrytis cinerea, genes encoding three hydrophobins and six hydrophobin-like proteins were identified. Expression analyses revealed low or no expression of these genes in conidia, while some of them showed increased or specific expression in other stages, such as sclerotia or fruiting bodies. Bhp1 belongs to the class I hydrophobins, whereas Bhp2 and Bhp3 are members of hydrophobin class II. Single, double and triple hydrophobin knock-out mutants were constructed by consecutively deleting bhp1, bhp2 and bhp3. In addition, a mutant in the hydrophobin-like gene bhl1 was generated. The mutants were tested for germination and growth under different conditions, formation of sclerotia, ability to penetrate and infect host tissue, and for spore and mycelium surface properties. Surprisingly, none of the B. cinerea hydrophobin mutants showed obvious phenotypic defects in any of these characters. Scanning electron microscopy of the hydrophobic conidial surfaces did not reveal evidence for the presence of typical hydrophobin 'rodlet' layers. CONCLUSIONS These data provide evidence that in B. cinerea, hydrophobins are not involved in conferring surface hydrophobicity to conidia and aerial hyphae, and challenge their universal role in filamentous fungi. The function of some of these proteins in sclerotia and fruiting bodies remains to be investigated.
Collapse
Affiliation(s)
- Andreas Mosbach
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
11
|
|