1
|
Yasir M, Icke C, Abdelwahab R, Haycocks JR, Godfrey RE, Sazinas P, Pallen MJ, Henderson IR, Busby SJW, Browning DF. Organization and architecture of AggR-dependent promoters from enteroaggregative Escherichia coli. Mol Microbiol 2018; 111:534-551. [PMID: 30485564 PMCID: PMC6392122 DOI: 10.1111/mmi.14172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC), is a diarrhoeagenic human pathogen commonly isolated from patients in both developing and industrialized countries. Pathogenic EAEC strains possess many virulence determinants, which are thought to be involved in causing disease, though, the exact mechanism by which EAEC causes diarrhoea is unclear. Typical EAEC strains possess the transcriptional regulator, AggR, which controls the expression of many virulence determinants, including the attachment adherence fimbriae (AAF) that are necessary for adherence to human gut epithelial cells. Here, using RNA‐sequencing, we have investigated the AggR regulon from EAEC strain 042 and show that AggR regulates the transcription of genes on both the bacterial chromosome and the large virulence plasmid, pAA2. Due to the importance of fimbriae, we focused on the two AAF/II fimbrial gene clusters in EAEC 042 (afaB‐aafCB and aafDA) and identified the promoter elements and AggR‐binding sites required for fimbrial expression. In addition, we examined the organization of the fimbrial operon promoters from other important EAEC strains to understand the rules of AggR‐dependent activation. Finally, we generated a series of semi‐synthetic promoters to define the minimal sequence required for AggR‐mediated activation and show that the correct positioning of a single AggR‐binding site is sufficient to confer AggR‐dependence.
Collapse
Affiliation(s)
- Muhammad Yasir
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Radwa Abdelwahab
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,Faculty of Medicine, Assiut University, Assiut, Egypt
| | - James R Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pavelas Sazinas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Sellars LE, Bryant JA, Sánchez-Romero MA, Sánchez-Morán E, Busby SJW, Lee DJ. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12. BMC Microbiol 2017; 17:170. [PMID: 28774286 PMCID: PMC5543585 DOI: 10.1186/s12866-017-1079-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. RESULTS We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. CONCLUSION Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.
Collapse
Affiliation(s)
- Laura E. Sellars
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Jack A. Bryant
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | | | | | - Stephen J. W. Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - David J. Lee
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Department of Life Sciences, Birmingham City University, Edgbaston, Birmingham, B15 3TN UK
| |
Collapse
|
3
|
Haycocks JRJ, Grainger DC. Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality. PLoS One 2016; 11:e0157016. [PMID: 27258043 PMCID: PMC4892627 DOI: 10.1371/journal.pone.0157016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023] Open
Abstract
A commonly accepted paradigm of molecular biology is that transcription factors control gene expression by binding sites at the 5' end of a gene. However, there is growing evidence that transcription factor targets can occur within genes or between convergent genes. In this work, we have investigated one such target for the cyclic AMP receptor protein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two convergent genes. When bound, CRP regulates transcription of a small open reading frame, which we term aatS, embedded within one of the adjacent genes. Our work demonstrates that non-canonical sites of transcription factor binding can have hidden functionality.
Collapse
Affiliation(s)
- James R. J. Haycocks
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Haycocks JRJ, Sharma P, Stringer AM, Wade JT, Grainger DC. The molecular basis for control of ETEC enterotoxin expression in response to environment and host. PLoS Pathog 2015; 11:e1004605. [PMID: 25569153 PMCID: PMC4287617 DOI: 10.1371/journal.ppat.1004605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhoea in humans and neonatal farm animals. Annually, 380,000 human deaths, and multi-million dollar losses in the farming industry, can be attributed to ETEC infections. Illness results from the action of enterotoxins, which disrupt signalling pathways that manage water and electrolyte homeostasis in the mammalian gut. The resulting fluid loss is treated by oral rehydration. Hence, aqueous solutions of glucose and salt are ingested by the patient. Given the central role of enterotoxins in disease, we have characterised the regulatory trigger that controls toxin production. We show that, at the molecular level, the trigger is comprised of two gene regulatory proteins, CRP and H-NS. Strikingly, this renders toxin expression sensitive to both conditions encountered on host cell attachment and the components of oral rehydration therapy. For example, enterotoxin expression is induced by salt in an H-NS dependent manner. Furthermore, depending on the toxin gene, expression is activated or repressed by glucose. The precise sensitivity of the regulatory trigger to glucose differs because of variations in the regulatory setup for each toxin encoding gene.
Collapse
Affiliation(s)
- James R. J. Haycocks
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, New York, United States of America
| | - David C. Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Nakano M, Ogasawara H, Shimada T, Yamamoto K, Ishihama A. Involvement of cAMP-CRP in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis. FEMS Microbiol Lett 2014; 355:93-9. [PMID: 24814025 DOI: 10.1111/1574-6968.12466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022] Open
Abstract
cAMP receptor protein (CRP) is the best characterized global regulator of Escherichia coli. After genomic SELEX screening, a total of minimum 378 promoters have been identified as its regulation targets on the E. coli genome. Among a number of promoters carrying two CRP-binding sites, several promoters carry two CRP-binding sites, one upstream but another downstream of transcription initiation sites. The regulatory role of downstream CRP site remains unsolved. Using the pck gene encoding phosphoenolpyruvate carboxykinase as a model promoter, we analyzed the role of CRP-associated downstream of the transcription initiation site. Gel shift assay and AFM observation indicate that CRP binds to both the promoter-distal site (CRP box-1) at -90.5 and the site (CRP box-2) at +13.5 downstream of transcription initiation site. The binding affinity is higher for CRP box-1. Roles of two CRP sites were examined using in vitro transcription assay and in vivo reporter assay. In both cases, transcription repression was observed in the presence of high concentrations of CRP. Taken together, we propose that cAMP-CRP associated at downstream CRP box-2 plays as a repressor for pck transcription only in the presence of high levels of cAMP-CRP.
Collapse
Affiliation(s)
- Masahiro Nakano
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
Singh SS, Grainger DC. H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLoS Genet 2013; 9:e1003589. [PMID: 23818873 PMCID: PMC3688479 DOI: 10.1371/journal.pgen.1003589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Extremely AT-rich DNA sequences present a challenging template for specific recognition by RNA polymerase. In bacteria, this is because the promoter -10 hexamer, the major DNA element recognised by RNA polymerase, is itself AT-rich. We show that Histone-like Nucleoid Structuring (H-NS) protein can facilitate correct recognition of a promoter by RNA polymerase in AT-rich gene regulatory regions. Thus, at the Escherichia coli ehxCABD operon, RNA polymerase is unable to distinguish between the promoter -10 element and similar overlapping sequences. This problem is resolved in native nucleoprotein because the overlapping sequences are masked by H-NS. Our work provides mechanistic insight into nucleoprotein structure and its effect on protein-DNA interactions in prokaryotic cells.
Collapse
Affiliation(s)
- Shivani S. Singh
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Chintakayala K, Singh SS, Rossiter AE, Shahapure R, Dame RT, Grainger DC. E. coli Fis protein insulates the cbpA gene from uncontrolled transcription. PLoS Genet 2013; 9:e1003152. [PMID: 23341772 PMCID: PMC3547828 DOI: 10.1371/journal.pgen.1003152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/24/2012] [Indexed: 12/20/2022] Open
Abstract
The Escherichia coli curved DNA binding protein A (CbpA) is a poorly characterised nucleoid associated factor and co-chaperone. It is expressed at high levels as cells enter stationary phase. Using genetics, biochemistry, and genomics, we have examined regulation of, and DNA binding by, CbpA. We show that Fis, the dominant growth-phase nucleoid protein, prevents CbpA expression in growing cells. Regulation by Fis involves an unusual “insulation” mechanism. Thus, Fis protects cbpA from the effects of a distal promoter, located in an adjacent gene. In stationary phase, when Fis levels are low, CbpA binds the E. coli chromosome with a preference for the intrinsically curved Ter macrodomain. Disruption of the cbpA gene prompts dramatic changes in DNA topology. Thus, our work identifies a novel role for Fis and incorporates CbpA into the growing network of factors that mediate bacterial chromosome structure. Compaction of chromosomal DNA is a fundamental process that impacts on all aspects of cellular biology. However, our understanding of chromosome organisation in bacteria is poorly developed. Since bacteria are amongst the most abundant living organisms on the planet, this represents a startling gap in our knowledge. Despite our lack of understanding, it has long been known that Escherichia coli, and other bacteria, radically re-model their chromosomes in response to environmental stress. This is most notable during periods of starvation, when the E. coli chromosome is super compacted. In dissecting the molecular mechanisms that control this phenomenon, we have found that regulatory cross-talk between DNA–organising proteins plays an essential role. Thus, the major DNA folding protein from growing E. coli inhibits production of the major chromosome organisers in starved cells. Our findings illustrate the highly dynamic nature of bacterial chromosomes. Thus, DNA topology, gene transcription, and chromosome folding proteins entwine to create a web of interactions that define the properties of the chromosome.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Shivani S. Singh
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Amanda E. Rossiter
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Rajesh Shahapure
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
| | - Remus T. Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Laboratory of Molecular Genetics and Cell Observatory, Leiden University, Leiden, The Netherlands
| | - David C. Grainger
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Lloyd GS, Godfrey RE, Busby SJW. Targets for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters. FEMS Microbiol Lett 2010; 305:28-34. [PMID: 20141531 DOI: 10.1111/j.1574-6968.2010.01907.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Hollands K, Lee DJ, Lloyd GS, Busby SJW. Activation of sigma 28-dependent transcription in Escherichia coli by the cyclic AMP receptor protein requires an unusual promoter organization. Mol Microbiol 2010; 75:1098-111. [PMID: 19843224 PMCID: PMC2859248 DOI: 10.1111/j.1365-2958.2009.06913.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
The Escherichia coli aer regulatory region contains a single promoter that is recognized by RNA polymerase containing the flagellar sigma factor, sigma(28). Expression from this promoter is dependent on direct activation by the cyclic AMP receptor protein, which binds to a target centred 49.5 base pairs upstream from the transcript start. Activator-dependent transcription from the aer promoter was reconstituted in vitro, and a tethered inorganic nuclease was used to find the position of the C-terminal domains of the RNA polymerase alpha subunits in transcriptionally competent open complexes. We report that the ternary activator--RNA polymerase--aer promoter open complex is organized differently from complexes at previously characterized promoters. Among other E. coli promoters recognized by RNA polymerase containing sigma(28), only the trg promoter is activated directly by the cyclic AMP receptor protein. The organization of the different promoter elements and the activator binding site at the trg promoter is the same as at the aer promoter, suggesting a common activation mechanism.
Collapse
Affiliation(s)
- Kerry Hollands
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, UK
| | - David J Lee
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, UK
| | - Georgina S Lloyd
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, UK
| | - Stephen J W Busby
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, UK
| |
Collapse
|