1
|
Pan B, Ye F, Li T, Wei F, Warren A, Wang Y, Gao S. Potential role of N 6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. iScience 2023; 26:106676. [PMID: 37182097 PMCID: PMC10173741 DOI: 10.1016/j.isci.2023.106676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
N6-adenine DNA methylation (6mA), a rediscovered epigenetic mark in eukaryotic organisms, diversifies in abundance, distribution, and function across species, necessitating its study in more taxa. Paramecium bursaria is a typical model organism with endosymbiotic algae of the species Chlorella variabilis. This consortium therefore serves as a valuable system to investigate the functional role of 6mA in endosymbiosis, as well as the evolutionary importance of 6mA among eukaryotes. In this study, we report the first genome-wide, base pair-resolution map of 6mA in P. bursaria and identify its methyltransferase PbAMT1. Functionally, 6mA exhibits a bimodal distribution at the 5' end of RNA polymerase II-transcribed genes and possibly participates in transcription by facilitating alternative splicing. Evolutionarily, 6mA co-evolves with gene age and likely serves as a reverse mark of endosymbiosis-related genes. Our results offer new insights for the functional diversification of 6mA in eukaryotes as an important epigenetic mark.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Fei Ye
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Fan Wei
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Yuanyuan Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- Corresponding author
| | - Shan Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Guerrier S, Plattner H, Richardson E, Dacks JB, Turkewitz AP. An evolutionary balance: conservation vs innovation in ciliate membrane trafficking. Traffic 2016; 18:18-28. [PMID: 27696651 DOI: 10.1111/tra.12450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 12/15/2022]
Abstract
As most of eukaryotic diversity lies in single-celled protists, they represent unique opportunities to ask questions about the balance of conservation and innovation in cell biological features. Among free-living protists the ciliates offer ease of culturing, a rich array of experimental approaches, and versatile molecular tools, particularly in Tetrahymena thermophila and Paramecium tetraurelia. These attributes have been exploited by researchers to analyze a wealth of cellular structures in these large and complex cells. This mini-review focuses on 3 aspects of ciliate membrane dynamics, all linked with endolysosomal trafficking. First is nutrition based on phagocytosis and maturation of food vacuoles. Secondly, we discuss regulated exocytosis from vesicles that have features of both dense core secretory granules but also lysosome-related organelles. The third topic is the targeting, breakdown and resorption of parental nuclei in mating partners. For all 3 phenomena, it is clear that elements of the canonical membrane-trafficking system have been retained and in some cases repurposed. In addition, there is evidence that recently evolved, lineage-specific proteins provide determinants in these pathways.
Collapse
Affiliation(s)
| | - Helmut Plattner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|