1
|
Atay G, Holyavkin C, Can H, Arslan M, Topaloğlu A, Trotta M, Çakar ZP. Evolutionary engineering and molecular characterization of cobalt-resistant Rhodobacter sphaeroides. Front Microbiol 2024; 15:1412294. [PMID: 38993486 PMCID: PMC11236759 DOI: 10.3389/fmicb.2024.1412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
With its versatile metabolism including aerobic and anaerobic respiration, photosynthesis, photo-fermentation and nitrogen fixation, Rhodobacter sphaeroides can adapt to diverse environmental and nutritional conditions, including the presence of various stressors such as heavy metals. Thus, it is an important microorganism to study the molecular mechanisms of bacterial stress response and resistance, and to be used as a microbial cell factory for biotechnological applications or bioremediation. In this study, a highly cobalt-resistant and genetically stable R. sphaeroides strain was obtained by evolutionary engineering, also known as adaptive laboratory evolution (ALE), a powerful strategy to improve and characterize genetically complex, desired microbial phenotypes, such as stress resistance. For this purpose, successive batch selection was performed in the presence of gradually increased cobalt stress levels between 0.1-15 mM CoCl2 for 64 passages and without any mutagenesis of the initial population prior to selection. The mutant individuals were randomly chosen from the last population and analyzed in detail. Among these, a highly cobalt-resistant and genetically stable evolved strain called G7 showed significant cross-resistance against various stressors such as iron, magnesium, nickel, aluminum, and NaCl. Growth profiles and flame atomic absorption spectrometry analysis results revealed that in the presence of 4 mM CoCl2 that significantly inhibited growth of the reference strain, the growth of the evolved strain was unaffected, and higher levels of cobalt ions were associated with G7 cells than the reference strain. This may imply that cobalt ions accumulated in or on G7 cells, indicating the potential of G7 for cobalt bioremediation. Whole genome sequencing of the evolved strain identified 23 single nucleotide polymorphisms in various genes that are associated with transcriptional regulators, NifB family-FeMo cofactor biosynthesis, putative virulence factors, TRAP-T family transporter, sodium/proton antiporter, and also in genes with unknown functions, which may have a potential role in the cobalt resistance of R. sphaeroides.
Collapse
Affiliation(s)
- Güneş Atay
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Can Holyavkin
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Hanay Can
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| | - Massimo Trotta
- IPCF-CNR Istituto per I processi Chimico-Fisici, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, İstanbul, Türkiye
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (İTÜ-MOBGAM), Istanbul Technical University, İstanbul, Türkiye
| |
Collapse
|
2
|
Effects of High Temperature-Triggered Transcriptomics on the Physiological Adaptability of Cenococcum geophilum, an Ectomycorrhizal Fungus. Microorganisms 2022; 10:microorganisms10102039. [PMID: 36296315 PMCID: PMC9607556 DOI: 10.3390/microorganisms10102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
High temperature stress caused by global warming presents a challenge to the healthy development of forestry. Cenococcum geophilum is a common ectomycorrhizal fungus (ECMF) in the forest system and has become an important fungus resource with application potential in forest vegetation restoration. In this study, three sensitive isolates of C. geophilum (ChCg01, JaCg144 and JaCg202) and three tolerant isolates of C. geophilum (ACg07, ChCg28 and ChCg100) were used to analyze the physiological and molecular responses to high temperature. The results showed that high temperature had a significant negative effect on the growth of sensitive isolates while promoting the growth of tolerant isolates. The antioxidative enzymes activity of C. geophilum isolates increased under high temperature stress, and the SOD activity of tolerant isolates (A07Cg and ChCg100) was higher than that of sensitive isolates (ChCg01 and JaCg202) significantly. The tolerant isolates secreted more succinate, while the sensitive isolates secreted more oxalic acid under high temperature stress. Comparative transcriptomic analysis showed that differentially expressed genes (DEGs) of six C. geophilum isolates were significantly enriched in "antioxidant" GO entry in the molecular. In addition, the "ABC transporters" pathway and the "glyoxylate and dicarboxylic acid metabolic" were shared in the three tolerant isolates and the three sensitive isolates, respectively. These results were further verified by RT-qPCR analysis. In conclusion, our findings suggest that C. geophilum can affect the organic acid secretion and increase antioxidant enzyme activity in response to high temperature by upregulating related genes.
Collapse
|
3
|
Waditee-Sirisattha R, Kageyama H. Global transcriptome analyses and regulatory mechanisms in Halothece sp. PCC 7418 exposed to abiotic stresses. Appl Microbiol Biotechnol 2022; 106:6641-6655. [DOI: 10.1007/s00253-022-12163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
|
4
|
Yurgel SN, Qu Y, Rice JT, Ajeethan N, Zink EM, Brown JM, Purvine S, Lipton MS, Kahn ML. Specialization in a Nitrogen-Fixing Symbiosis: Proteome Differences Between Sinorhizobium medicae Bacteria and Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1409-1422. [PMID: 34402628 DOI: 10.1094/mpmi-07-21-0180-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using tandem mass spectrometry (MS/MS), we analyzed the proteome of Sinorhizobium medicae WSM419 growing as free-living cells and in symbiosis with Medicago truncatula. In all, 3,215 proteins were identified, over half of the open reading frames predicted from the genomic sequence. The abundance of 1,361 proteins displayed strong lifestyle bias. In total, 1,131 proteins had similar levels in bacteroids and free-living cells, and the low levels of 723 proteins prevented statistically significant assignments. Nitrogenase subunits comprised approximately 12% of quantified bacteroid proteins. Other major bacteroid proteins included symbiosis-specific cytochromes and FixABCX, which transfer electrons to nitrogenase. Bacteroids had normal levels of proteins involved in amino acid biosynthesis, glycolysis or gluconeogenesis, and the pentose phosphate pathway; however, several amino acid degradation pathways were repressed. This suggests that bacteroids maintain a relatively independent anabolic metabolism. Tricarboxylic acid cycle proteins were highly expressed in bacteroids and no other catabolic pathway emerged as an obvious candidate to supply energy and reductant to nitrogen fixation. Bacterial stress response proteins were induced in bacteroids. Many WSM419 proteins that are not encoded in S. meliloti Rm1021 were detected, and understanding the functions of these proteins might clarify why S. medicae WSM419 forms a more effective symbiosis with M. truncatula than S. meliloti Rm1021.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Jennifer T Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Faculty of Technology, University of Jaffna, Sri Lanka
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Joseph M Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Sam Purvine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Michael L Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, U.S.A
| |
Collapse
|
5
|
Sharma M, Singh DN, Budhraja R, Sood U, Rawat CD, Adrian L, Richnow HH, Singh Y, Negi RK, Lal R. Comparative proteomics unravelled the hexachlorocyclohexane (HCH) isomers specific responses in an archetypical HCH degrading bacterium Sphingobium indicum B90A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41380-41395. [PMID: 33783707 DOI: 10.1007/s11356-021-13073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorocyclohexane (HCH) is a persistent organochlorine pesticide that poses threat to different life forms. Sphingobium indicum B90A that belong to sphingomonad is well-known for its ability to degrade HCH isomers (α-, β-, γ-, δ-), but effects of HCH isomers and adaptive mechanisms of strain B90A under HCH load remain obscure. To investigate the responses of strain B90A to HCH isomers, we followed the proteomics approach as this technique is considered as the powerful tool to study the microbial response to environmental stress. Strain B90A culture was exposed to α-, β-, γ-, δ-HCH (5 mgL-1) and control (without HCH) taken for comparison and changes in whole cell proteome were analyzed. In β- and δ-HCH-treated cultures growth decreased significantly when compared to control, α-, and γ-HCH-treated cultures. HCH residue analysis corroborated previous observations depicting the complete depletion of α- and γ-HCH, while only 66% β-HCH and 34% δ-HCH were depleted from culture broth. Comparative proteome analyses showed that β- and δ-HCH induced utmost systemic changes in strain B90A proteome, wherein stress-alleviating proteins such as histidine kinases, molecular chaperons, DNA binding proteins, ABC transporters, TonB proteins, antioxidant enzymes, and transcriptional regulators were significantly affected. Besides study confirmed constitutive expression of linA, linB, and linC genes that are crucial for the initiation of HCH isomers degradation, while increased abundance of LinM and LinN in presence of β- and δ-HCH suggested the important role of ABC transporter in depletion of these isomers. These results will help to understand the HCH-induced damages and adaptive strategies of strain B90A under HCH load which remained unravelled to date.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Rohit Budhraja
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, 110007, India
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
6
|
Aikawa S, Thianheng P, Baramee S, Ungkulpasvich U, Tachaapaikoon C, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A. Phenotypic characterization and comparative genome analysis of two strains of thermophilic, anaerobic, cellulolytic-xylanolytic bacterium Herbivorax saccincola. Enzyme Microb Technol 2020; 136:109517. [PMID: 32331721 DOI: 10.1016/j.enzmictec.2020.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 01/25/2020] [Indexed: 11/25/2022]
Abstract
The genome sequences of thermophilic, anaerobic, and cellulolytic-xylanolytic bacterium Herbivorax saccincola strains A7 and GGR1 have recently been determined. Although both strains belong to the same species, A7 is alkaliphilic, non-endospore-forming, and ammonium-assimilating, whereas GGR1 is neutrophilic, endospore-forming, and weak-ammonium-assimilating. To better understand the phenotypic diversity among H. saccincola strains, the genome sequences of A7 and GGR1 were compared. A7 contained three additional genes showing similarity to an alkaline stress-associated ABC-transporter but lacked four endospore formation-associated genes, AUG58543 and AUG58618 (encoding SpoVT), AUG57258 (encoding SpoVS), and AUG58614 (encoding YdhD), all of which were present in GGR1. In addition, A7 contained key ammonia assimilation genes PQQ67145 and PQQ66619, encoding ornithine cyclodeaminase and arginase, respectively, which were absent in GGR1. There was no difference in the number and types of cellulosomal-scaffolding proteins and glycosyl hydrolases between the two strains. However, cellulase and xylanase enzymes from A7 demonstrated greater activity and stability at an alkaline pH compared with those from GGR1, and amino acid substitutions were identified in 11 glycosyl hydrolases from A7. This characterization though comparative genomic analysis provides useful information for understanding the genetic basis of the phenotypic differences between H. saccincola strains isolated from distinct areas and environments.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Phakhinee Thianheng
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sirilak Baramee
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Umbhorn Ungkulpasvich
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
7
|
Li LQ, Lyu CC, Li JH, Tong Z, Lu YF, Wang XY, Ni S, Yang SM, Zeng FC, Lu LM. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress. Int J Mol Sci 2019; 20:ijms20010221. [PMID: 30626112 PMCID: PMC6337362 DOI: 10.3390/ijms20010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The protein–protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Cheng-Cheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jia-Hao Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Zhu Tong
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shi-Min Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Fu-Chun Zeng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
8
|
Santos R, de Carvalho CCCR, Stevenson A, Grant IR, Hallsworth JE. Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:746-764. [PMID: 26059202 DOI: 10.1111/1758-2229.12306] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Mycobacteria are associated with a number of well-characterized diseases, yet we know little about their stress biology in natural ecosystems. This study focuses on the isolation and characterization of strains from Yellowstone National Park (YNP) and Glacier National Park (GNP; USA), the majority of those identified were Mycobacterium parascrofulaceum, Mycobacterium avium (YNP) or Mycobacterium gordonae (GNP). Generally, their windows for growth spanned a temperature range of > 60 °C; selected isolates grew at super-saturated concentrations of hydrophobic stressors and at levels of osmotic stress and chaotropic activity (up to 13.4 kJ kg(-1) ) similar to, or exceeding, those for the xerophilic fungus Aspergillus wentii and solvent-tolerant bacterium Pseudomonas putida. For example, mycobacteria grew down to 0.800 water activity indicating that they are, with the sole exception of halophiles, more xerotolerant than other bacteria (or any Archaea). Furthermore, the fatty-acid composition of Mycobacterium cells grown over a range of salt concentrations changed less than that of other bacteria, indicating a high level of resilience, regardless of the stress load. Cells of M. parascrofulaceum, M. smegmatis and M. avium resisted the acute, potentially lethal challenges from extremes of pH (< 1; > 13), and saturated MgCl2 solutions (5 M; 212 kJ kg(-1) chaotropicity). Collectively, these findings challenge the paradigm that bacteria have solute tolerances inferior to those of eukaryotes.
Collapse
Affiliation(s)
- Ricardo Santos
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, Northern Ireland
- Instituto Superior Técnico, Laboratório de Análises, Lisbon, 1049-001, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, Northern Ireland
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, Northern Ireland
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
9
|
Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase. PLoS One 2015; 10:e0139143. [PMID: 26401955 PMCID: PMC4581636 DOI: 10.1371/journal.pone.0139143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.
Collapse
|
10
|
Matsuda S, Nagasawa H, Yamashiro N, Yasuno N, Watanabe T, Kitazawa H, Takano S, Tokuji Y, Tani M, Takamure I, Kato K. Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:103-111. [PMID: 24908511 DOI: 10.1016/j.plantsci.2014.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Mineral balance and salt stress are major factors affecting plant growth and yield. Here, we characterized the effects of rice (Oryza sativa L.) reduced culm number1 (rcn1), encoding a G subfamily ABC transporter (OsABCG5) involved in accumulation of essential and nonessential minerals, the Na/K ratio, and salt tolerance. Reduced potassium and elevated sodium in field-grown plants were evident in rcn1 compared to original line 'Shiokari' and four independent rcn mutants, rcn2, rcn4, rcn5 and rcn6. A high Na/K ratio was evident in the shoots and roots of rcn1 under K starvation and salt stress in hydroponically cultured plants. Downregulation of SKC1/OsHKT1;5 in rcn1 shoots under salt stress demonstrated that normal function of RCN1/OsABCG5 is essential for upregulation of SKC1/OsHKT1;5 under salt stress. The accumulation of various minerals in shoots and roots was also altered in the rcn1 mutant compared to 'Shiokari' under control conditions, potassium starvation, and salt and d-sorbitol treatments. The rcn1 mutation resulted in a salt-sensitive phenotype. We concluded that RCN1/OsABCG5 is a salt tolerance factor that acts via Na/K homeostasis, at least partly by regulation of SKC1/OsHKT1;5 in shoots.
Collapse
Affiliation(s)
- Shuichi Matsuda
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Hidetaka Nagasawa
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Nobuhiro Yamashiro
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Naoko Yasuno
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hideyuki Kitazawa
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Sho Takano
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Yoshihiko Tokuji
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Masayuki Tani
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kiyoaki Kato
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
11
|
Volpicella M, Costanza A, Palumbo O, Italiano F, Claudia L, Placido A, Picardi E, Carella M, Trotta M, Ceci LR. Rhodobacter sphaeroidesadaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol Ecol 2014; 88:345-57. [DOI: 10.1111/1574-6941.12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Alessandra Costanza
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - Orazio Palumbo
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Francesca Italiano
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Leoni Claudia
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Antonio Placido
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
- National Institute of Biostructures and Biosystems (INBB); Roma Italy
| | - Massimo Carella
- Medical Genetics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Massimo Trotta
- Institute for Chemical-Physical Processes; Italian National Research Council (CNR); Bari Italy
| | - Luigi R. Ceci
- Institute for Biomembranes and Bioenergetics; CNR; Bari Italy
| |
Collapse
|
12
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Gao M, Barnett MJ, Long SR, Teplitski M. Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:355-365. [PMID: 20192823 PMCID: PMC4827774 DOI: 10.1094/mpmi-23-4-0355] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The RNA-binding protein Hfq is a global regulator which controls diverse cellular processes in bacteria. To begin understanding the role of Hfq in the Sinorhizobium meliloti-Medicago truncatula nitrogen-fixing symbiosis, we defined free-living and symbiotic phenotypes of an hfq mutant. Over 500 transcripts were differentially accumulated in the hfq mutant of S. meliloti Rm1021 when grown in a shaking culture. Consistent with transcriptome-wide changes, the hfq mutant displayed dramatic alterations in metabolism of nitrogen-containing compounds, even though its carbon source utilization profiles were nearly identical to the wild type. The hfq mutant had reduced motility and was impaired for growth at alkaline pH. A deletion of hfq resulted in a reduced symbiotic efficiency, although the mutant was still able to initiate nodule development and differentiate into bacteroids.
Collapse
Affiliation(s)
- Mengsheng Gao
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32610, U.S.A
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Max Teplitski
- Soil and Water Science Department, Cancer and Genetics Research Complex, Room 330E, University of Florida-Institute of Food and Agricultural Sciences, Gainesville 32610, U.S.A
| |
Collapse
|