1
|
Bilto IM, Guha TK, Wai A, Hausner G. Three new active members of the I-OnuI family of homing endonucleases. Can J Microbiol 2017; 63:671-681. [PMID: 28414922 DOI: 10.1139/cjm-2017-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro characterization of 3 LAGLIDADG-type homing endonucleases (HEs) (I-CcaI, I-CcaII, and I-AstI) that belong to the I-OnuI family showed that they are functional HEs that cleave their respective cognate target sites. These endonucleases are encoded within group ID introns and appear to be orthologues that have inserted into 3 different mitochondrial genes: rns, rnl, and cox3. The endonuclease activity of I-CcaI was tested using various substrates, and its minimum DNA recognition sequence was estimated to be 26 nt. This set of HEs may provide some insight into how these types of mobile elements can migrate into new locations. This study provides additional endonucleases that can be added to the catalog of currently available HEs that may have various biotechnology applications.
Collapse
Affiliation(s)
- Iman M Bilto
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tuhin K Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
2
|
Guha TK, Hausner G. Insertion of Group II Intron-Based Ribozyme Switches into Homing Endonuclease Genes. Methods Mol Biol 2017; 1498:135-152. [PMID: 27709573 DOI: 10.1007/978-1-4939-6472-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing, targeted mutagenesis and gene therapy applications. Herein, we present strategies where homing endonuclease open reading frames (HEases ORFs) are interrupted with group II intron sequences. The ultimate goal is to achieve in vivo expression of HEases that can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. That addition of exogenous magnesium chloride (MgCl2) appears to stimulate splicing of nonnative group II introns in Escherichia coli and the addition of cobalt chloride (CoCl2) to the growth medium antagonizes the expression of HEase activity (i.e., splicing). Group II introns are potentially autocatalytic self-splicing elements and thus can be used as molecular switches that allow for temporal regulated HEase expression. This should be useful in precision genome engineering, mutagenesis, and minimizing off-target activities.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2
| | - Georg Hausner
- Department of Microbiology, 401 University of Manitoba, Buller Building 213, Winnipeg, MB, Canada, R3T 2N2.
| |
Collapse
|
3
|
Guha TK, Hausner G. Using Group II Introns for Attenuating the In Vitro and In Vivo Expression of a Homing Endonuclease. PLoS One 2016; 11:e0150097. [PMID: 26909494 PMCID: PMC4801052 DOI: 10.1371/journal.pone.0150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/09/2016] [Indexed: 01/09/2023] Open
Abstract
In Chaetomium thermophilum (DSM 1495) within the mitochondrial DNA (mtDNA) small ribosomal subunit (rns) gene a group IIA1 intron interrupts an open reading frame (ORF) encoded within a group I intron (mS1247). This arrangement offers the opportunity to examine if the nested group II intron could be utilized as a regulatory element for the expression of the homing endonuclease (HEase). Constructs were generated where the codon-optimized ORF was interrupted with either the native group IIA1 intron or a group IIB type intron. This study showed that the expression of the HEase (in vivo) in Escherichia coli can be regulated by manipulating the splicing efficiency of the HEase ORF-embedded group II introns. Exogenous magnesium chloride (MgCl2) stimulated the expression of a functional HEase but the addition of cobalt chloride (CoCl2) to growth media antagonized the expression of HEase activity. Ultimately the ability to attenuate HEase activity might be useful in precision genome engineering, minimizing off target activities, or where pathways have to be altered during a specific growth phase.
Collapse
Affiliation(s)
- Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
4
|
Hafez M, Guha TK, Hausner G. I-OmiI and I-OmiII: two intron-encoded homing endonucleases within the Ophiostoma minus rns gene. Fungal Biol 2014; 118:721-31. [PMID: 25110134 DOI: 10.1016/j.funbio.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
The mitochondrial small subunit ribosomal RNA (rns) gene of the ascomycetous fungus Ophiostoma minus [strain WIN(M)371] was found to contain a group IC2 and a group IIB1 intron at positions mS569 and mS952 respectively. Both introns have open reading frames (ORFs) embedded that encode double motif LAGLIDADG homing endonucleases (I-OmiI and I-OmiII respectively). Codon-optimized versions of I-OmiI and I-OmiII were synthesized for overexpression in Escherichia coli. The in vitro characterization of I-OmiII showed that it is a functional homing endonuclease that cleaves the rns target site two nucleotides upstream (sense strand) of the intron insertion site generating 4 nucleotide 3' overhangs. The endonuclease activity of I-OmiII was tested using linear and circular substrates and cleavage activity was evaluated at various temperatures. The I-OmiI protein was expressed in E. coli, but purification was difficult, thus the endonuclease activity of this protein was tested via in vivo assays. Overall this study showed that there are many native forms of functional homing endonucleases yet to be discovered among fungal mtDNA genomes.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Botany, Faculty of Science, Suez University, Suez, Egypt
| | - Tuhin Kumar Guha
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
5
|
Guha TK, Hausner G. A homing endonuclease with a switch: Characterization of a twintron encoded homing endonuclease. Fungal Genet Biol 2014; 65:57-68. [DOI: 10.1016/j.fgb.2014.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
6
|
Hafez M, Guha TK, Shen C, Sethuraman J, Hausner G. PCR-based bioprospecting for homing endonucleases in fungal mitochondrial rRNA genes. Methods Mol Biol 2014; 1123:37-53. [PMID: 24510258 DOI: 10.1007/978-1-62703-968-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fungal mitochondrial genomes act as "reservoirs" for homing endonucleases. These enzymes with their DNA site-specific cleavage activities are attractive tools for genome editing and gene therapy applications. Bioprospecting and characterization of naturally occurring homing endonucleases offers an alternative to synthesizing artificial endonucleases. Here, we describe methods for PCR-based screening of fungal mitochondrial rRNA genes for homing endonuclease encoding sequences, and we also provide protocols for the purification and biochemical characterization of putative native homing endonucleases.
Collapse
Affiliation(s)
- Mohamed Hafez
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
7
|
Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR. Biotechnol Lett 2013; 36:985-92. [DOI: 10.1007/s10529-013-1441-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
|
8
|
Mullineux ST, Willows K, Hausner G. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene. J Mol Evol 2011; 72:433-49. [PMID: 21479820 DOI: 10.1007/s00239-011-9442-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Examination of the mitochondrial small subunit ribosomal RNA (rns) gene of five species of the fungal genus Leptographium revealed that the gene has been invaded at least once at position 952 by a group II intron encoding a LAGLIDADG homing endonuclease gene. Phylogenetic analyses of the intron and homing endonuclease sequences indicated that each element in Leptographium species forms a single clade and is closely related to the group II intron/homing endonuclease gene composite element previously reported at position 952 of the mitochondrial rns gene of Cordyceps species and of Cryphonectria parasitica. The results of an intron survey of the mt rns gene of Leptographium species superimposed onto the phylogenetic analysis of the host organisms suggest that the composite element was transmitted vertically in Leptographium lundbergii. However, its stochastic distribution among strains of L. wingfieldii, L. terebrantis, and L. truncatum suggests that it has been horizontally transmitted by lateral gene transfer among these species, although the random presence of the intron may reflect multiple random loss events. A model is proposed describing the initial invasion of the group II intron in the rns gene of L. lundbergii by a LAGLIDADG homing endonuclease gene and subsequent evolution of this gene to recognize a novel DNA target site, which may now promote the mobility of the intron and homing endonuclease gene as a composite element.
Collapse
|
9
|
Mullineux ST, Costa M, Bassi GS, Michel F, Hausner G. A group II intron encodes a functional LAGLIDADG homing endonuclease and self-splices under moderate temperature and ionic conditions. RNA (NEW YORK, N.Y.) 2010; 16:1818-1831. [PMID: 20656798 PMCID: PMC2924541 DOI: 10.1261/rna.2184010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/16/2010] [Indexed: 05/29/2023]
Abstract
A group II intron encoding a protein belonging to the LAGLIDADG family of homing endonucleases was identified in the mitochondrial rns gene of the filamentous fungus Leptographium truncatum, and the catalytic activities of both the intron and its encoded protein were characterized. A model of the RNA secondary structure indicates that the intron is a member of the IIB1 subclass and the open reading frame is inserted in ribozyme domain III. In vitro assays carried out with two versions of the intron, one in which the open reading frame was removed and the other in which it was present, demonstrate that both versions of the intron readily self-splice at 37 degrees C and at a concentration of MgCl(2) as low as 6 mM. The open reading frame encodes a functional LAGLIDADG homing endonuclease that cleaves 2 (top strand) and 6 (bottom strand) nucleotides (nt) upstream of the intron insertion site, generating 4 nt 3' OH overhangs. In vitro splicing assays carried out in the absence and presence of the intron-encoded protein indicate that the protein does not enhance intron splicing, and RNA-binding assays show that the protein does not appear to bind to the intron RNA precursor transcript. These findings raise intriguing questions concerning the functional and evolutionary relationships of the two components of this unique composite element.
Collapse
|