1
|
Kalli S, Vallieres C, Violet J, Sanders JW, Chapman J, Vincken JP, Avery SV, Araya-Cloutier C. Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiol Spectr 2023; 11:e0132723. [PMID: 37428107 PMCID: PMC10433819 DOI: 10.1128/spectrum.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.
Collapse
Affiliation(s)
- Sylvia Kalli
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph Violet
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - John Chapman
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Santos-Pereira C, Andrés MT, Chaves SR, Fierro JF, Gerós H, Manon S, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Int J Biol Macromol 2021; 171:343-357. [PMID: 33421469 DOI: 10.1016/j.ijbiomac.2020.12.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein. Results showed that bovine Lf (bLf) perturbs ergosterol-rich lipid rafts organization by inducing intracellular accumulation of ergosterol. Using yeast mutant strains lacking lipid rafts-associated proteins or enzymes involved in the synthesis of ergosterol and sphingolipids, we found that perturbations in the composition of these membrane domains increase resistance to bLf-induced yeast cell death. Also, when Pma1p-lipid rafts association is compromised in the Pma1-10 mutant and in the absence of the Pma1p-binding protein Ast1p, the bLf killing activity is impaired. Altogether, results showed that the perturbation of lipid rafts and the inhibition of both Pma1p and V-ATPase activities mediate the antifungal activity of bLf. Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - María T Andrés
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - José F Fierro
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Daicho K, Koike N, Ott RG, Daum G, Ushimaru T. TORC1 ensures membrane trafficking of Tat2 tryptophan permease via a novel transcriptional activator Vhr2 in budding yeast. Cell Signal 2020; 68:109542. [PMID: 31954176 DOI: 10.1016/j.cellsig.2020.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
The target of rapamycin complex 1 (TORC1) protein kinase is activated by nutrients and controls nutrient uptake via the membrane trafficking of various nutrient permeases. However, its molecular mechanisms remain elusive. Cholesterol (ergosterol in yeast) in conjunction with sphingolipids forms tight-packing microdomains, "lipid rafts", which are critical for intracellular protein sorting. Here we show that a novel target of rapamycin (TOR)-interacting transcriptional activator Vhr2 is required for full expression of some ERG genes for ergosterol biogenesis and for proper sorting of the tryptophan permease Tat2 in budding yeast. Loss of Vhr2 caused sterol biogenesis disturbance and Tat2 missorting. TORC1 activity maintained VHR2 transcript and protein levels, and total sterol levels. Vhr2 was not involved in regulation of the TORC1-downstream protein kinase Npr1, which regulates Tat2 sorting. This study suggests that TORC1 regulates nutrient uptake via sterol biogenesis.
Collapse
Affiliation(s)
- Katsue Daicho
- Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - Naoki Koike
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| | - René Georg Ott
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Günther Daum
- Institut für Biochemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | - Takashi Ushimaru
- Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan; Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan.
| |
Collapse
|
4
|
Johnston EJ, Moses T, Rosser SJ. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 2020; 37:27-44. [PMID: 31800968 DOI: 10.1002/yea.3452] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Yeast strains have been used extensively as robust microbial cell factories for the production of bulk and fine chemicals, including biofuels (bioethanol), complex pharmaceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fragrances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to suppress or modify ergosterol biosynthesis during strain engineering, for example, to increase thermotolerance or to increase metabolic flux through an alternate pathway. However, the impact of modifying ergosterol biosynthesis on engineered strains is discussed sparsely in literature, and little attention has been paid to the implications of these modifications on the general health and well-being of yeast. Importantly, yeast with modified sterol content exhibit a wide range of phenotypes, including altered organization and dynamics of plasma membrane, altered susceptibility to chemical treatment, increased tolerance to high temperatures, and reduced tolerance to other stresses such as high ethanol, salt, and solute concentrations. Here, we review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content and discuss the implications of these for yeast as microbial cell factories.
Collapse
Affiliation(s)
- Emily J Johnston
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tessa Moses
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci Rep 2019; 9:18341. [PMID: 31797992 PMCID: PMC6892922 DOI: 10.1038/s41598-019-54925-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.
Collapse
|
6
|
Degreif D, Cucu B, Budin I, Thiel G, Bertl A. Lipid determinants of endocytosis and exocytosis in budding yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1005-1016. [DOI: 10.1016/j.bbalip.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
|
7
|
Ueno K, Nagano M, Shimizu S, Toshima JY, Toshima J. Lipid droplet proteins, Lds1p, Lds2p, and Rrt8p, are implicated in membrane protein transport associated with ergosterol. Biochem Biophys Res Commun 2016; 475:315-21. [DOI: 10.1016/j.bbrc.2016.05.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
|
8
|
ERG2 and ERG24 Are Required for Normal Vacuolar Physiology as Well as Candida albicans Pathogenicity in a Murine Model of Disseminated but Not Vaginal Candidiasis. EUKARYOTIC CELL 2015; 14:1006-16. [PMID: 26231054 DOI: 10.1128/ec.00116-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed.
Collapse
|
9
|
Estrada AF, Muruganandam G, Prescianotto-Baschong C, Spang A. The ArfGAP2/3 Glo3 and ergosterol collaborate in transport of a subset of cargoes. Biol Open 2015; 4:792-802. [PMID: 25964658 PMCID: PMC4571087 DOI: 10.1242/bio.011528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins reach the plasma membrane through the secretory pathway in which the trans Golgi network (TGN) acts as a sorting station. Transport from the TGN to the plasma membrane is maintained by a number of different pathways that act either directly or via the endosomal system. Here we show that a subset of cargoes depends on the ArfGAP2/3 Glo3 and ergosterol to maintain their proper localization at the plasma membrane. While interfering with neither ArfGAP2/3 activity nor ergosterol biosynthesis individually significantly altered plasma membrane localization of the tryptophan transporter Tat2, the general amino acid permease Gap1 and the v-SNARE Snc1, in a Δglo3 Δerg3 strain those proteins accumulated in internal endosomal structures. Export from the TGN to the plasma membrane and recycling from early endosomes appeared unaffected as the chitin synthase Chs3 that travels along these routes was localized normally. Our data indicate that a subset of proteins can reach the plasma membrane efficiently but after endocytosis becomes trapped in endosomal structures. Our study supports a role for ArfGAP2/3 in recycling from endosomes and in transport to the vacuole/lysosome.
Collapse
Affiliation(s)
- Alejandro F Estrada
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Gopinath Muruganandam
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Anne Spang
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
11
|
Bowie D, Parvizi P, Duncan D, Nelson CJ, Fyles TM. Chemical-genetic identification of the biochemical targets of polyalkyl guanidinium biocides. Org Biomol Chem 2013; 11:4359-66. [PMID: 23689276 DOI: 10.1039/c3ob40593a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylated guanidinium compounds exhibit microbiocidal activity in marine environments, yet the mode of action of these compounds has not been defined. A comprehensive chemical-genetic approach in budding yeast was used to define the biological processes affected by these compounds. N-Butyl-N'-decylguanidinium and N-hexyl-N'-(3-hydroxypropyl)-N''-octylguanidinium chlorides were shown to prevent yeast growth in a dose-dependent manner. All non-essential genes required for tolerance of sub-lethal amounts of these biocides were identified. These unbiased and systematic screens reveal the two related guanidinium compounds have a non-overlapping spectrum of targets in vivo. A functional tryptophan biosynthetic pathway is essential for tolerance of both biocides, which identifies tryptophan amino acid import as one process affected by these compounds. Further analysis of hypersensitive gene lists demonstrates that the substitutions on alkylated guanidiums confer important functional differences in vivo: one derivative renders the ability to generate acidic vacuoles essential, while the other is synthetically lethal with mutants in the transcriptional response to chemical stress. Altogether the results define the common and distinct biological processes affected by biocidal alkylated guanidinium salts.
Collapse
Affiliation(s)
- Drew Bowie
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3065, Victoria, BC, Canada
| | | | | | | | | |
Collapse
|
12
|
Pressure-induced endocytic degradation of the Saccharomyces cerevisiae low-affinity tryptophan permease Tat1 is mediated by Rsp5 ubiquitin ligase and functionally redundant PPxY motif proteins. EUKARYOTIC CELL 2013; 12:990-7. [PMID: 23666621 DOI: 10.1128/ec.00049-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1(K29R-K31R)-GFP remained. The HPG1-1 (Rsp5(P514T)) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure.
Collapse
|
13
|
Cvelbar D, Zist V, Kobal K, Zigon D, Zakelj-Mavrič M. Steroid toxicity and detoxification in ascomycetous fungi. Chem Biol Interact 2013; 202:243-58. [PMID: 23257178 DOI: 10.1016/j.cbi.2012.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
In the last couple of decades fungal infections have become a significant clinical problem. A major interest into fungal steroid action has been provoked since research has proven that steroid hormones are toxic to fungi and affect the host/fungus relationship. Steroid hormones were found to differ in their antifungal activity in ascomycetous fungi Hortaea werneckii, Saccharomyces cerevisiae and Aspergillus oryzae. Dehydroepiandrosterone was shown to be the strongest inhibitor of growth in all three varieties of fungi followed by androstenedione and testosterone. For their protection, fungi use several mechanisms to lower the toxic effects of steroids. The efficiency of biotransformation in detoxification depended on the microorganism and steroid substrate used. Biotransformation was a relatively slow process as it also depended on the growth phase of the fungus. In addition to biotransformation, steroid extrusion out of the cells contributed to the lowering of the active intracellular steroid concentration. Plasma membrane Pdr5 transporter was found to be the most effective, followed by Snq2 transporter and vacuolar transporters Ybt1 and Ycf1. Proteins Aus1 and Dan1 were not found to be involved in steroid import. The research of possible targets of steroid hormone action in fungi suggests that steroid hormones inhibit ergosterol biosynthesis in S. cerevisiae and H. werneckii. Results of this inhibition caused changes in the sterol content of the cellular membrane. The presence of steroid hormones most probably causes the degradation of the Tat2 permease and impairment of tryptophan import.
Collapse
Affiliation(s)
- Damjana Cvelbar
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
14
|
Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:1059-67. [PMID: 22230596 DOI: 10.1016/j.bbalip.2011.12.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, the trans-Golgi network serves as a sorting station for post-Golgi traffic. In addition to coat- and adaptor-mediated mechanisms, studies in mammalian epithelial cells and yeast have provided evidence for lipid-dependent protein sorting as a major delivery mechanism for cargo sorting to the cell surface. The mechanism for lipid-mediated sorting is the generation of raft platforms of sphingolipids, sterols and specific sets of cargo proteins by phase segregation in the TGN. Here, we review the evidence for such lipid-raft-based sorting at the TGN, as well as their involvement in the formation of TGN-to-PM transport carriers. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Michal A Surma
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | | |
Collapse
|
15
|
A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. EUKARYOTIC CELL 2011; 10:1241-50. [PMID: 21724935 DOI: 10.1128/ec.05029-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Potassium homeostasis is crucial for living cells. In the yeast Saccharomyces cerevisiae, the uptake of potassium is driven by the electrochemical gradient generated by the Pma1 H(+)-ATPase, and this process represents a major consumer of the gradient. We considered that any mutation resulting in an alteration of the electrochemical gradient could give rise to anomalous sensitivity to any cationic drug independently of its toxicity mechanism. Here, we describe a genomewide screen for mutants that present altered tolerance to hygromycin B, spermine, and tetramethylammonium. Two hundred twenty-six mutant strains displayed altered tolerance to all three drugs (202 hypersensitive and 24 hypertolerant), and more than 50% presented a strong or moderate growth defect at a limiting potassium concentration (1 mM). Functional groups such as protein kinases and phosphatases, intracellular trafficking, transcription, or cell cycle and DNA processing were enriched. Essentially, our screen has identified a substantial number of genes that were not previously described to play a direct or indirect role in potassium homeostasis. A subset of 27 representative mutants were selected and subjected to diverse biochemical tests that, in some cases, allowed us to postulate the basis for the observed phenotypes.
Collapse
|
16
|
Hannich JT, Umebayashi K, Riezman H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004762. [PMID: 21454248 DOI: 10.1101/cshperspect.a004762] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry, University of Geneva, Geneva 4, Switzerland
| | | | | |
Collapse
|
17
|
Johnson SS, Hanson PK, Manoharlal R, Brice SE, Cowart LA, Moye-Rowley WS. Regulation of yeast nutrient permease endocytosis by ATP-binding cassette transporters and a seven-transmembrane protein, RSB1. J Biol Chem 2010; 285:35792-802. [PMID: 20826817 DOI: 10.1074/jbc.m110.162883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is produced by the condensation of a long chain base with a very long chain fatty acid. In Saccharomyces cerevisiae, one of the two major long chain bases is called phytosphingosine (PHS). PHS has been shown to cause toxicity in tryptophan auxotrophic strains of yeast because this bioactive ceramide precursor causes diversion of the high affinity tryptophan permease Tat2 to the vacuole rather than the plasma membrane. Loss of the integral membrane protein Rsb1 increased PHS sensitivity, which was suggested to be due to this protein acting as an ATP-dependent long chain base efflux protein. More recent experiments demonstrated that loss of the genes encoding the ATP-binding cassette transporter proteins Pdr5 and Yor1 elevated PHS tolerance. This increased resistance was suggested to be due to increased expression of RSB1. Here, we provide an alternative view of PHS resistance influenced by Rsb1 and Pdr5/Yor1. Rsb1 has a seven-transmembrane domain topology more consistent with that of a regulatory protein like a G-protein-coupled receptor rather than a transporter. Importantly, an rsb1Δ cell does not exhibit higher internal levels of PHS compared with isogenic wild-type cells. However, tryptophan transport is increased in pdr5Δ yor1 strains and reduced in rsb1Δ cells. Localization and vacuolar degradation of Tat2 are affected in these genetic backgrounds. Finally, internalization of FM4-64 dye suggests that loss of Pdr5 and Yor1 slows normal endocytic rates. Together, these data argue that Rsb1, Pdr5, and Yor1 regulate the endocytosis of Tat2 and likely other membrane transporter proteins.
Collapse
Affiliation(s)
- Soraya S Johnson
- Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|