1
|
Sarno A, Leite A, Augusto C, Muller I, de Ângelis L, Pimentel L, Queiroz A, Arruda S. Impaired macrophage and memory T-cell responses to Bacillus Calmette-Guerin nonpolar lipid extract. Front Immunol 2024; 14:1263352. [PMID: 38274831 PMCID: PMC10808680 DOI: 10.3389/fimmu.2023.1263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction The attenuation of BCG has led to the loss of not only immunogenic proteins but also lipid antigens. Methods Thus, we compared the macrophage and T-cell responses to nonpolar lipid extracts harvested from BCG and Mycobacterium tuberculosis (Mtb) to better understand the role of BCG lipids in the already known diminished responses of the vaccine strain. Results Relative to Mtb, nonpolar lipid extract from BCG presented a reduced capacity to trigger the expression of the genes encoding TNF, IL-1b, IL-6 and IL-10 in RAW 264.7 macrophages. Immunophenotyping of PBMCs isolated from healthy individuals revealed that lipids from both BCG and Mtb were able to induce an increased frequency of CD4+ and CD8+ T cells, but only the lipid extract from Mtb enhanced the frequency of CD4-CD8-double-negative, γσ+, CD4+HLA-DR+, and γσ+HLA-DR+ T cells relative to the nonstimulated control. Interestingly, only the Mtb lipid extract was able to increase the frequency of CD4+ memory (CD45RO+) T cells, whereas the BCG lipid extract induced a diminished frequency of CD4+ central memory (CD45RO+CCR7-) T cells after 48 h of culture compared to Mtb. Discussion These findings show that the nonpolar lipids of the BCG bacilli presented diminished ability to trigger both proinflammatory and memory responses and suggest a potential use of Mtb lipids as adjuvants to increase the BCG vaccine efficacy.
Collapse
Affiliation(s)
- Alice Sarno
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Avelina Leite
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Carlos Augusto
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Igor Muller
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Luanna de Ângelis
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Lilian Pimentel
- Laboratory of Immunoepidemiology, Aggeu Magalhães Institute, Fiocruz, Recife, Brazil
| | - Adriano Queiroz
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
| | - Sergio Arruda
- Advanced Laboratory of Public Health, Gonçalo Moniz Institute, Fiocruz, Salvador, Brazil
- Department of Life Sciences, State University of Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Mukherjee N, Julián E, Torrelles JB, Svatek RS. Effects of Mycobacterium bovis Calmette et Guérin (BCG) in oncotherapy: Bladder cancer and beyond. Vaccine 2021; 39:7332-7340. [PMID: 34627626 DOI: 10.1016/j.vaccine.2021.09.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The Mycobacterium bovis Bacillus Calmette et Guérin (BCG) vaccine was generated in 1921 with the efforts of a team of investigators, Albert Calmette and Camille Guérin, dedicated to the determination to develop a vaccine against active tuberculosis (TB) disease. Since then, BCG vaccination is used globally for protection against childhood and disseminated TB; however, its efficacy at protecting against pulmonary TB in adult and aging populations is highly variable. Due to the BCG generated immunity, this vaccine later proved to have an antitumor activity; though the standing mechanisms behind are still unclear. Recent studies indicate that both innate and adaptive cell responses may play an important role in BCG eradication and prevention of bladder cancer. Thus, cells such as natural killer (NK) cells, macrophages, dendritic cells, neutrophils but also MHC-restricted CD4 and CD8 T cells and γδ T cells may play an important role and can be one the main effectors in BCG therapy. Here, we discuss the role of BCG therapy in bladder cancer and other cancers, including current strategies and their impact on the generation and sustainability of protective antitumor immunity against bladder cancer.
Collapse
Affiliation(s)
- Neelam Mukherjee
- Department of Urology University of Texas Health San Antonio (UTHSA), San Antonio, TX, USA
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Robert S Svatek
- Department of Urology University of Texas Health San Antonio (UTHSA), San Antonio, TX, USA.
| |
Collapse
|
3
|
Comparative Study of the Susceptibility to Oxidative Stress between Two Types of Mycobacterium bovis BCG Tokyo 172. mSphere 2021; 6:6/2/e00111-21. [PMID: 33692195 PMCID: PMC8546687 DOI: 10.1128/msphere.00111-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic analysis revealed that the vaccine seed lot of Mycobacterium bovis bacillus Calmette-Guérin (BCG) Tokyo 172 contains two subclones (types I and II), but their phenotypic differences have not been elucidated. In this study, we compared the susceptibility of bacilli types I and II to oxidative stress in vitro and within host cells. Notably, the subclones displayed similar superoxide dismutase activity; however, foam height in the catalase test and lysate catalase/peroxidase activity were higher for type I bacilli than for type II bacilli. Additionally, type I bacilli were less susceptible to hydrogen peroxide (H2O2) than type II bacilli. After exposure to H2O2, antioxidative stress response genes katG, ahpC, sodA, and trxA were more strongly induced in type I bacilli than in type II bacilli. Further, we investigated cell survival in macrophages. Fewer type II bacilli were recovered than type I bacilli. However, in the presence of apocynin, a specific inhibitor of NADPH oxidase, type II recovery was greater than that of type I. The production of interleukin 1β (IL-1β), IL-12 p40, and tumor necrosis factor alpha (TNF-α) was higher in type I bacillus-infected macrophages than in type II bacillus-infected macrophages. The proportions of type I and type II bacilli in vaccine lots over 3 years (100 lots) were 97.6% ± 1.5% and 2.4% ± 1.5%, respectively. The study results illustrated that type I bacilli are more resistant to oxidative stress than type II bacilli. Overall, these findings provide important information in terms of the quality control and safety of BCG Tokyo 172 vaccine. IMPORTANCE This study revealed the difference of in vivo and in vitro antioxidative stress properties of BCG Tokyo 172 types I and II as one of the bacteriological characteristics. In particular, the bacilli exhibited differences in catalase/peroxidase activity, which could explain their different protective effects against infection. The differences correlated with survival in the host cell and the production of proinflammatory cytokines to protect against infection by Mycobacterium tuberculosis. The proportion of bacilli types I and II in all commercial lots of BCG Tokyo 172 over 3 years (100 lots) was constant. The findings also highlighted the importance of analyzing their content for quality control during vaccine production.
Collapse
|
4
|
Pane K, Mirabelli P, Coppola L, Illiano E, Salvatore M, Franzese M. New Roadmaps for Non-muscle-invasive Bladder Cancer With Unfavorable Prognosis. Front Chem 2020; 8:600. [PMID: 32850635 PMCID: PMC7413024 DOI: 10.3389/fchem.2020.00600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
About 70% of bladder cancers (BCs) are diagnosed as non-muscle-invasive BCs (NMIBCs), while the remaining are muscle-invasive BCs (MIBCs). The European Association of Urology (EAU) guidelines stratify NMIBCs into low, intermediate, and high risk for treatment options. Low-risk NMIBCs undergo only the transurethral resection of the bladder (TURB), whereas for intermediate-risk and high-risk NMIBCs, the transurethral resection of the bladder (TURB) with or without Bacillus Calmette-Guérin (BCG) immune or chemotherapy is the standard treatment. A minority of NMIBCs show unfavorable prognosis. High-risk NMIBCs have a high rate of disease recurrence and/or progression to muscle-invasive tumor and BCG treatment failure. The heterogeneous nature of NMIBCs poses challenges for clinical decision-making. In 2020, the EAU made some changes to NMIBCs BCG failure definitions and treatment options, highlighting the need for reliable molecular markers for improving the predictive accuracy of currently available risk tables. Nowadays, next-generation sequencing (NGS) has revolutionized the study of cancer biology, providing diagnostic, prognostic, and therapy response biomarkers in support of precision medicine. Integration of NGS with other cutting-edge technologies might help to decipher also bladder tumor surrounding aspects such as immune system, stromal component, microbiome, and urobiome; altogether, this might impact the clinical outcomes of NMBICs especially in the BCG responsiveness. This review focuses on NMIBCs with unfavorable prognoses, providing molecular prognostic factors from tumor immune and stromal cells, and the perspective of urobiome and microbiome profiling on therapy response. We provide information on the cornerstone of immunotherapy and new promising bladder-preserving treatments and ongoing clinical trials for BCG–unresponsive NMIBCs.
Collapse
Affiliation(s)
| | | | | | - Ester Illiano
- Andrological and Urogynecological Clinic, Santa Maria Terni Hospital, University of Perugia, Terni, Italy
| | | | | |
Collapse
|
5
|
Abstract
BCG immunotherapy is the gold-standard treatment for non-muscle-invasive bladder cancer at high risk of recurrence or progression. Preclinical and clinical studies have revealed that a robust inflammatory response to BCG involves several steps: attachment of BCG; internalization of BCG into resident immune cells, normal cells, and tumour urothelial cells; BCG-mediated induction of innate immunity, which is orchestrated by a cellular and cytokine milieu; and BCG-mediated initiation of tumour-specific immunity. As an added layer of complexity, variation between clinical BCG strains might influence development of tumour immunity. However, more than 40 years after the first use of BCG for bladder cancer, many questions regarding its mechanism of action remain unanswered. Clearly, a better understanding of the mechanisms underlying BCG-mediated tumour immunity could lead to improved efficacy, increased tolerance of treatment, and identification of novel immune-based therapies. Indeed, enthusiasm for bladder cancer immunotherapy, and the possibility of combining BCG with other therapies, is increasing owing to the availability of targeted immunotherapies, including checkpoint inhibitors. Understanding of the mechanism of action of BCG immunotherapy has advanced greatly, but many questions remain, and further basic and clinical research efforts are needed to develop new treatment strategies for patients with bladder cancer.
Collapse
|
6
|
Kasempimolporn S, Premchaiporn P, Thaveekarn W, Boonchang S, Sitprija V. Comparative Proteomic Profiling of Mycobacterium tuberculosis and the Thai Vaccine Strain Mycobacterium bovis Bacille Calmette-Guerin Tokyo172: Diverse Biomarker Candidates for Species Differentiation. J Glob Infect Dis 2018; 10:196-200. [PMID: 30581260 PMCID: PMC6276322 DOI: 10.4103/jgid.jgid_149_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Bacille Calmette–Guerin (BCG)-related complications can occur in vaccinated children. Comparison of the composition of cellular proteins of virulent Mycobacterium tuberculosis (MTB) H37Rv with of attenuated Mycobacterium bovis BCG Tokyo172 vaccine strain used in Thailand and identify protein candidates of value for differentiation between the two mycobacterial species may facilitate the diagnosis of etiologic agent of mycobacterial disease in vaccinated children, as most cases have been believed to have originated from BCG vaccine. Materials and Methods: The two-dimensional electrophoresis (2DE) proteomic profiles of cellular proteins from the Thai vaccine strain M. bovis BCG Tokyo172 and MTB were compared and the matched spots in 2DE gels were submitted to mass spectrometry analysis. Results: There were a number of similar protein contents with different intensity or position between MTB and M. bovis BCG Tokyo172. A higher expression of some immunogenic proteins was shown in BGG Tokyo172 when compared to MTB, while some were shown the opposite pattern. Conclusions: Proteomic approach reveals key proteins participating in different species of Mycobacteria, and may be useful for discrimination between MTB and the BCG Tokyo172 infection.
Collapse
Affiliation(s)
- Songsri Kasempimolporn
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pornpimol Premchaiporn
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wichit Thaveekarn
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Supatsorn Boonchang
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Visith Sitprija
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Sanchini A, Dematheis F, Semmler T, Lewin A. Metabolic phenotype of clinical and environmental Mycobacterium avium subsp. hominissuis isolates. PeerJ 2017; 5:e2833. [PMID: 28070460 PMCID: PMC5214758 DOI: 10.7717/peerj.2833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium avium subsp. hominissuis (MAH) is an emerging opportunistic human pathogen. It can cause pulmonary infections, lymphadenitis and disseminated infections in immuno-compromised patients. In addition, MAH is widespread in the environment, since it has been isolated from water, soil or dust. In recent years, knowledge on MAH at the molecular level has increased substantially. In contrast, knowledge of the MAH metabolic phenotypes remains limited. Methods In this study, for the first time we analyzed the metabolic substrate utilization of ten MAH isolates, five from a clinical source and five from an environmental source. We used BIOLOG Phenotype MicroarrayTM technology for the analysis. This technology permits the rapid and global analysis of metabolic phenotypes. Results The ten MAH isolates tested showed different metabolic patterns pointing to high intra-species diversity. Our MAH isolates preferred to use fatty acids such as Tween, caproic, butyric and propionic acid as a carbon source, and L-cysteine as a nitrogen source. Environmental MAH isolates resulted in being more metabolically active than clinical isolates, since the former metabolized more strongly butyric acid (p = 0.0209) and propionic acid (p = 0.00307). Discussion Our study provides new insight into the metabolism of MAH. Understanding how bacteria utilize substrates during infection might help the developing of strategies to fight such infections.
Collapse
Affiliation(s)
- Andrea Sanchini
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| | - Flavia Dematheis
- Institute of Microbiology and Epizootics, Free University Berlin , Berlin , Germany
| | - Torsten Semmler
- NG 1 Microbial Genomics, Robert Koch Institute , Berlin , Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute , Berlin , Germany
| |
Collapse
|
8
|
Deep sequencing analysis of the heterogeneity of seed and commercial lots of the bacillus Calmette-Guérin (BCG) tuberculosis vaccine substrain Tokyo-172. Sci Rep 2015; 5:17827. [PMID: 26635118 PMCID: PMC4669467 DOI: 10.1038/srep17827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
BCG, only vaccine available to prevent tuberculosis, was established in the early 20th century by prolonged passaging of a virulent clinical strain of Mycobacterium bovis. BCG Tokyo-172, originally distributed within Japan in 1924, is one of the currently used reference substrains for the vaccine. Recently, this substrain was reported to contain two spontaneously arising, heterogeneous subpopulations (Types I and II). The proportions of the subpopulations changed over time in both distributed seed lots and commercial lots. To maintain the homogeneity of live vaccines, such variations and subpopulational mutations in lots should be restrained and monitored. We incorporated deep sequencing techniques to validate such heterogeneity in lots of the BCG Tokyo-172 substrain without cloning. By bioinformatics analysis, we not only detected the two subpopulations but also detected two intrinsic variations within these populations. The intrinsic variants could be isolated from respective lots as colonies cultured on plate media, suggesting analyses incorporating deep sequencing techniques are powerful, valid tools to detect mutations in live bacterial vaccine lots. Our data showed that spontaneous mutations in BCG vaccines could be easily monitored by deep sequencing without direct isolation of variants, revealing the complex heterogeneity of BCG Tokyo-172 and its daughter lots currently in use.
Collapse
|
9
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette–Guerin and recombinant bacillus Calmette–Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015. [DOI: 10.1586/14760584.2015.1068124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan-qiang Zheng
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Youssef W Naguib
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- 3National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
10
|
Singh S, Kumar M, Singh P. Evolution of M. bovis BCG Vaccine: Is Niacin Production Still a Valid Biomarker? Tuberc Res Treat 2015; 2015:957519. [PMID: 25694828 PMCID: PMC4324913 DOI: 10.1155/2015/957519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 02/07/2023] Open
Abstract
BCG vaccine is usually considered to be safe though rarely serious complications have also been reported, often incriminating contamination of the seed strain with pathogenic Mycobacterium tuberculosis. In such circumstances, it becomes prudent to rule out the contamination of the vaccine seed. M. bovis BCG can be confirmed by the absence of nitrate reductase, negative niacin test, and resistance to pyrazinamide and cycloserine. Recently in India, some stocks were found to be niacin positive which led to a national controversy and closer of a vaccine production plant. This prompted us to write this review and the comparative biochemical and genotypic studies were carried out on the these contentious vaccine stocks at the Indian vaccine plant and other seeds and it was found that some BCG vaccine strains and even some strains of M. bovis with eugenic-growth characteristics mainly old laboratory strains may give a positive niacin reaction. Most probably, the repeated subcultures lead to undefined changes at the genetic level in these seed strains. These changing biological characteristics envisage reevaluation of biochemical characters of existing BCG vaccine seeds and framing of newer guidelines for manufacturing, production, safety, and effectiveness of BCG vaccine.
Collapse
Affiliation(s)
- Sarman Singh
- 1Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
- *Sarman Singh:
| | - Manoj Kumar
- 1Division of Clinical Microbiology & Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pragati Singh
- 2National Polio Surveillance Project, Country Office for India, World Health Organization, Mathura 281001, India
| |
Collapse
|
11
|
Secanella-Fandos S, Luquin M, Julián E. Connaught and Russian Strains Showed the Highest Direct Antitumor Effects of Different Bacillus Calmette-Guérin Substrains. J Urol 2013; 189:711-8. [DOI: 10.1016/j.juro.2012.09.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Affiliation(s)
- Silvia Secanella-Fandos
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
12
|
Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress. PLoS One 2012; 7:e37884. [PMID: 22675497 PMCID: PMC3366959 DOI: 10.1371/journal.pone.0037884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of severe gastroenteritis in cattle. To gain a better understanding of MAP virulence, we investigated the role of leuD gene in MAP metabolism and stress response. For this, we have constructed an auxotrophic strain of MAP by deleting the leuD gene using allelic exchange. The wildtype and mutant strains were then compared for metabolic phenotypic changes using Biolog phenotype microarrays. The responses of both strains to physiologically relevant stress conditions were assessed using DNA microarrays. Transcriptomic data was then analyzed in the context of cellular metabolic pathways and gene networks. Our results showed that deletion of leuD gene has a global effect on both MAP phenotypic and transcriptome response. At the metabolic level, the mutant strain lost the ability to utilize most of the carbon, nitrogen, sulphur, phosphorus and nutrient supplements as energy source. At the transcriptome level, more than 100 genes were differentially expressed in each of the stress condition tested. Systems level network analysis revealed that the differentially expressed genes were distributed throughout the gene network, thus explaining the global impact of leuD deletion in metabolic phenotype. Further, we find that leuD deletion impacted metabolic pathways associated with fatty acids. We verified this by experimentally estimating the total fatty acid content of both mutant and wildtype. The mutant strain had 30% less fatty acid content when compared to wildtype, thus supporting the results from transcriptional and computational analyses. Our results therefore reveal the intricate connection between the metabolism and virulence in MAP.
Collapse
|
13
|
Orduña P, Cevallos MA, de León SP, Arvizu A, Hernández-González IL, Mendoza-Hernández G, López-Vidal Y. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics 2011; 12:493. [PMID: 21981907 PMCID: PMC3199284 DOI: 10.1186/1471-2164-12-493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 10/08/2011] [Indexed: 12/03/2022] Open
Abstract
Background Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. Results BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. Conclusions BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time.
Collapse
Affiliation(s)
- Patricia Orduña
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, DF, México
| | | | | | | | | | | | | |
Collapse
|
14
|
Ito T, Takii T, Maruyama M, Hayashi D, Wako T, Asai A, Horita Y, Taniguchi K, Yano I, Yamamoto S, Onozaki K. Effectiveness of BCG vaccination to aged mice. IMMUNITY & AGEING 2010; 7:12. [PMID: 20809944 PMCID: PMC2936867 DOI: 10.1186/1742-4933-7-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 09/01/2010] [Indexed: 12/21/2022]
Abstract
Background The tuberculosis (TB) still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG) is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB) make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice. Results The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old) were comparable to those of young mice (4- to 6-week-old). The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice. Conclusion These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.
Collapse
Affiliation(s)
- Tsukasa Ito
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|