1
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Berkhout MD, Plugge CM, Belzer C. How microbial glycosyl hydrolase activity in the gut mucosa initiates microbial cross-feeding. Glycobiology 2021; 32:182-200. [PMID: 34939101 PMCID: PMC8966484 DOI: 10.1093/glycob/cwab105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
The intestinal epithelium is protected from direct contact with gut microbes by a mucus layer. This mucus layer consists of secreted mucin glycoproteins. The outer mucus layer in the large intestine forms a niche that attracts specific gut microbiota members of which several gut commensals can degrade mucin. Mucin glycan degradation is a complex process that requires a broad range of glycan degrading enzymes, as mucin glycans are intricate and diverse molecules. Consequently, it is hypothesised that microbial mucin breakdown requires concerted action of various enzymes in a network of multiple resident microbes at the gut mucosa. This review investigates the evolutionary relationships of microbial CAZymes that are potentially involved in mucin glycan degradation and focuses on the role that microbial enzymes play in the degradation of gut mucin glycans in microbial cross-feeding and syntrophic interactions.
Collapse
Affiliation(s)
- Maryse D Berkhout
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
3
|
Díaz R, Torres-Miranda A, Orellana G, Garrido D. Comparative Genomic Analysis of Novel Bifidobacterium longum subsp. longum Strains Reveals Functional Divergence in the Human Gut Microbiota. Microorganisms 2021; 9:microorganisms9091906. [PMID: 34576801 PMCID: PMC8470182 DOI: 10.3390/microorganisms9091906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/03/2022] Open
Abstract
Bifidobacterium longum subsp. longum is a prevalent group in the human gut microbiome. Its persistence in the intestinal microbial community suggests a close host-microbe relationship according to age. The subspecies adaptations are related to metabolic capabilities and genomic and functional diversity. In this study, 154 genomes from public databases and four new Chilean isolates were genomically compared through an in silico approach to identify genomic divergence in genes associated with carbohydrate consumption and their possible adaptations to different human intestinal niches. The pangenome of the subspecies was open, which correlates with its remarkable ability to colonize several niches. The new genomes homogenously clustered within subspecies longum, as observed in phylogenetic analysis. B. longum SC664 was different at the sequence level but not in its functions. COG analysis revealed that carbohydrate use is variable among longum subspecies. Glycosyl hydrolases participating in human milk oligosaccharide use were found in certain infant and adult genomes. Predictive genomic analysis revealed that B. longum M12 contained an HMO cluster associated with the use of fucosylated HMOs but only endowed with a GH95, being able to grow in 2-fucosyllactose as the sole carbon source. This study identifies novel genomes with distinct adaptations to HMOs and highlights the plasticity of B. longum subsp. longum to colonize the human gut microbiota.
Collapse
|
4
|
Yao B, Liu JY, Cai SX, Zhao WJ, Xing JY. Alteration of gut microbiota and metabolomics in critically ill patients by sequential feeding: A pilot study. JPEN J Parenter Enteral Nutr 2021; 46:538-545. [PMID: 34042183 DOI: 10.1002/jpen.2198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sequential feeding (SF) is a new feeding mode for critically ill patients that involves a combination of continuous feeding (CF) in the beginning, rhythmic feeding in the second stage, and oral feeding in the last stage. In this study, we investigated the influence of SF on gut microbiota and metabolomics in critically ill patients. METHODS Stool specimens from 20 patients (10 patients with the SF group, 10 patients with the CF group) were collected for full-length 16S ribosomal RNA gene sequencing and untargeted metabolomics analysis. RESULTS The proportion of patients with low bacterial diversity (Shannon index < 4) in the SF group was much lower than that in the CF group, but there was no significant difference in the proportions (20% vs 50%, P = .350). The abundances of Actinobacteria/Actinobacteria (at the phylum and class levels), Pseudomonadaceae/Pseudomonas (at the family and genus levels), and Fusobacteria/Fusobacteriaceae/Fusobacteriales/Fusobacteria/Fusobacterium (at the phylum, class, order, family, and genus levels) were all higher in the SF group than in the CF group. Actinobacteria/Actinobacteria (at the phylum and class levels) were the most influential of these gut flora. Retinoic acid and leucine were upregulated in the SF group and were respectively responsible for the intestinal immune network for immunoglobulin A production and the mammalian target of rapamycin signaling pathway in the enriched pathways according to the Kyoto Encyclopedia of Genes and Genomes database classification. CONCLUSIONS SF could alter gut microbiota and metabolomics in critically ill patients. Because of the small sample size, further study is required.
Collapse
Affiliation(s)
- Bo Yao
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Systems Biology and Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian-Yu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shi-Xia Cai
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wan-Jun Zhao
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin-Yan Xing
- The Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Engevik MA, Engevik AC, Engevik KA, Auchtung JM, Chang-Graham AL, Ruan W, Luna RA, Hyser JM, Spinler JK, Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect Dis 2021; 7:1126-1142. [PMID: 33176423 DOI: 10.1021/acsinfecdis.0c00634] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely accepted that the pathogen Clostridioides difficile exploits an intestinal environment with an altered microbiota, but the details of these microbe-microbe interactions are unclear. Adherence and colonization of mucus has been demonstrated for several enteric pathogens and it is possible that mucin-associated microbes may be working in concert with C. difficile. We showed that C. difficile ribotype-027 adheres to MUC2 glycans and using fecal bioreactors, we identified that C. difficile associates with several mucin-degrading microbes. C. difficile was found to chemotax toward intestinal mucus and its glycan components, demonstrating that C. difficile senses the mucus layer. Although C. difficile lacks the glycosyl hydrolases required to degrade mucin glycans, coculturing C. difficile with the mucin-degrading Akkermansia muciniphila, Bacteroides thetaiotaomicron, and Ruminococcus torques allowed C. difficile to grow in media that lacked glucose but contained purified MUC2. Collectively, these studies expand our knowledge on how intestinal microbes support C. difficile.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville Tennessee 37232, United States
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer M. Auchtung
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Food Science and Technology, University of Nebraska—Lincoln, Lincoln Nebraska 68588, United States
| | - Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Wenly Ruan
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine Houston Texas 77030, United States
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine Houston Texas 77030, United States
- Department of Pathology, Texas Children’s Hospital Houston Texas 77030, United States
| |
Collapse
|
6
|
Luo Y, Xiao Y, Zhao J, Zhang H, Chen W, Zhai Q. The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Int J Biol Macromol 2020; 167:1329-1337. [PMID: 33202267 DOI: 10.1016/j.ijbiomac.2020.11.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Bifidobacteria are one genus of low-abundance gut commensals that are often associated with host health-promoting effects. Bifidobacteria can degrade various dietary fibers (i.e., galactooligosaccharides, fructooligosaccharides, inulin), and are reported as one of the few gut-dwelling microbes that can utilize host-derived carbohydrates (mucin and human milk oligosaccharides). Previous studies have noted that the superior carbohydrate-metabolizing abilities of bifidobacteria facilitate the intestinal colonization of this genus and also benefit other gut symbionts, in particular butyrate-producing bacteria, via cooperative metabolic interactions. Given that such cross-feeding activities of bifidobacteria on mucin and oligosaccharides have not been systematically summarized, here we review the carbohydrate-degrading capabilities of various bifidobacterial strains that were identified in vitro experiments, the core enzymes involved in the degradation mechanisms, and social behavior between bifidobacteria and other intestinal microbes, as well as among species-specific bifidobacterial strains. The purpose of this review is to enhance our understanding of the interactions of prebiotics and probiotics, which sheds new light on the future use of oligosaccharides and bifidobacteria for nutritional intervention or clinical application.
Collapse
Affiliation(s)
- Yanhong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, Borragán S, González A, Turroni F, Ossiprandi MC, Margolles A, van Sinderen D, Ventura M. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol 2020; 22:3375-3393. [PMID: 32515117 DOI: 10.1111/1462-2920.15108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
In recent years, bifidobacterial populations in the gut of various monkey species have been assessed in several ecological surveys, unveiling a diverse, yet unexplored ecosystem harbouring novel species. In the current study, we investigated the species distribution of bifidobacteria present in 23 different species of primates, including human samples, by means of 16S rRNA microbial profiling and internal transcribed spacer bifidobacterial profiling. Based on the observed bifidobacterial-host co-phylogeny, we found a statistically significant correlation between the Hominidae family and particular bifidobacterial species isolated from humans, indicating phylosymbiosis between these lineages. Furthermore, phylogenetic and glycobiome analyses, based on 40 bifidobacterial species isolated from primates, revealed that members of the Bifidobacterium tissieri phylogenetic group, which are typical gut inhabitants of members of the Cebidae family, descend from an ancient ancestor with respect to other bifidobacterial taxa isolated from primates.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, Parma, 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy
| | | | - Andrea González
- Zoo de Santillana, Avda. del Zoo 2, Santillana del Mar, Cantabria, 39330, Spain
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| | | | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, 33300, Spain.,MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, T12 YT20, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, 43124, Italy.,Microbiome Research Hub, University of Parma, Parma, 43124, Italy
| |
Collapse
|
8
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Riaz T, Iqbal MW, Saeed M, Yasmin I, Hassanin HAM, Mahmood S, Rehman A. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads. J Microencapsul 2019; 36:192-203. [DOI: 10.1080/02652048.2019.1618403] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Saeed
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Iqra Yasmin
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Diet and Nutritional Science, Faculty of Health and Allied Science, Imperial College of Business Studies, Lahore, Pakistan
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Hinawi A. M. Hassanin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Rocha Martin VN, Lacroix C, Killer J, Bunesova V, Voney E, Braegger C, Schwab C. Cutibacterium avidum is phylogenetically diverse with a subpopulation being adapted to the infant gut. Syst Appl Microbiol 2019; 42:506-516. [PMID: 31128887 DOI: 10.1016/j.syapm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The infant gut harbors a diverse microbial community consisting of several taxa whose persistence depends on adaptation to the ecosystem. In healthy breast-fed infants, the gut microbiota is dominated by Bifidobacterium spp.. Cutibacterium avidum is among the initial colonizers, however, the phylogenetic relationship of infant fecal isolates to isolates from other body sites, and C. avidum carbon utilization related to the infant gut ecosystem have been little investigated. In this study, we investigated the phylogenetic and phenotypic diversity of 28 C. avidum strains, including 16 strains isolated from feces of healthy infants. We investigated the in vitro capacity of C. avidum infant isolates to degrade and consume carbon sources present in the infant gut, and metabolic interactions of C. avidum with infant associated Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum. Isolates of C. avidum showed genetic heterogeneity. C. avidum consumed d- and l-lactate, glycerol, glucose, galactose, N-acetyl-d-glucosamine and maltodextrins. Alpha-galactosidase- and β-glucuronidase activity were a trait of a group of non-hemolytic strains, which were mostly isolated from infant feces. Beta-glucuronidase activity correlated with the ability to ferment glucuronic acid. Co-cultivation with B. infantis and B. bifidum enhanced C. avidum growth and production of propionate, confirming metabolic cross-feeding. This study highlights the phylogenetic and functional diversity of C. avidum, their role as secondary glycan degraders and propionate producers, and suggests adaptation of a subpopulation to the infant gut.
Collapse
Affiliation(s)
- Vanesa Natalin Rocha Martin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland; Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Jiri Killer
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | - Vera Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, Suchdol 165 00, Czech Republic
| | - Evelyn Voney
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH-Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
11
|
Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation. Appl Microbiol Biotechnol 2019; 103:2745-2758. [PMID: 30685814 DOI: 10.1007/s00253-019-09642-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Abstract
Nutritional intake may influence the intestinal epithelial glycome and in turn the available attachment sites for bacteria. In this study, we tested the hypothesis that bovine colostrum may influence the intestinal cell surface and in turn the attachment of commensal organisms. Human HT-29 intestinal cells were exposed to a bovine colostrum fraction (BCF) rich in free oligosaccharides. The adherence of several commensal bacteria, comprising mainly bifidobacteria, to the intestinal cells was significantly enhanced (up to 52-fold) for all strains tested which spanned species that are found across the human lifespan. Importantly, the changes to the HT-29 cell surface did not support enhanced adhesion of the enteric pathogens tested. The gene expression profile of the HT-29 cells following treatment with the BCF was evaluated by microarray analysis. Many so called "glyco-genes" (glycosyltransferases and genes involved in the complex biosynthetic pathways of glycans) were found to be differentially regulated suggesting modulation of the enzymatic addition of sugars to glycoconjugate proteins. The microarray data was further validated by means of real-time PCR. The current findings provide an insight into how commensal microorganisms colonise the human gut and highlight the potential of colostrum and milk components as functional ingredients that can potentially increase commensal numbers in individuals with lower counts of health-promoting bacteria.
Collapse
|
12
|
Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends Microbiol 2018; 26:339-350. [DOI: 10.1016/j.tim.2017.10.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
|
13
|
Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, van Sinderen D, Ventura M. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75:103-118. [PMID: 28983638 PMCID: PMC11105234 DOI: 10.1007/s00018-017-2672-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
14
|
Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol 2017; 8:2345. [PMID: 29255450 PMCID: PMC5722804 DOI: 10.3389/fmicb.2017.02345] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Bifidobacterium represents a genus within the phylum Actinobacteria which is one of the major phyla in the healthy intestinal tract of humans. Bifidobacterium is one of the most abundant genera in adults, but its predominance is even more pronounced in infants, especially during lactation, when they can constitute the majority of the total bacterial population. They are one of the pioneering colonizers of the early gut microbiota, and they are known to play important roles in the metabolism of dietary components, otherwise indigestible in the upper parts of the intestine, and in the maturation of the immune system. Bifidobacteria have been shown to interact with human immune cells and to modulate specific pathways, involving innate and adaptive immune processes. In this mini-review, we provide an overview of the current knowledge on the immunomodulatory properties of bifidobacteria and the mechanisms and molecular players underlying these processes, focusing on the corresponding implications for human health. We deal with in vitro models suitable for studying strain-specific immunomodulatory activities. These include peripheral blood mononuclear cells and T cell-mediated immune responses, both effector and regulatory cell responses, as well as the modulation of the phenotype of dendritic cells, among others. Furthermore, preclinical studies, mainly germ-free, gnotobiotic, and conventional murine models, and human clinical trials, are also discussed. Finally, we highlight evidence supporting the immunomodulatory effects of bifidobacterial molecules (proteins and peptides, exopolysaccharides, metabolites, and DNA), as well as the role of bifidobacterial metabolism in maintaining immune homeostasis through cross-feeding mechanisms.
Collapse
Affiliation(s)
- Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Susana Delgado
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Borja Sánchez
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| | - Abelardo Margolles
- Dairy Research Institute, Spanish National Research Council (Instituto de Productos Lácteos de Asturias - CSIC), Villaviciosa, Spain
| |
Collapse
|
15
|
Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81:e00036-17. [PMID: 29118049 PMCID: PMC5706746 DOI: 10.1128/mmbr.00036-17] [Citation(s) in RCA: 1099] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and disease.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Eoghan Casey
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Jennifer Mahony
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Susana Delgado Palacio
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Silvia Arboleya Montes
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Juan Miguel Rodriguez
- Department of Nutrition, Food Science and Food Technology, Complutense University of Madrid, Madrid, Spain
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California-San Diego, La Jolla, California, USA
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Bacteriology & Immunology, RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Miguel Gueimonde
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiologia y Bioquimica de Productos Lacteos, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Arboleya S, Stanton C, Ryan CA, Dempsey E, Ross PR. Bosom Buddies: The Symbiotic Relationship Between Infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and Probiotic Features. Annu Rev Food Sci Technol 2016; 7:1-21. [PMID: 26934170 DOI: 10.1146/annurev-food-041715-033151] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. Bifidobacterium longum is one of the most abundant species of the Bifidobacterium genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of 'omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of B. longum in the colon. The discovery of a genomic island in B. longum ssp. infantis that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, B. longum is widely used as probiotic, and beneficial effects in infant health have been reported in several studies.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Paul R Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; , .,School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
17
|
Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Appl Environ Microbiol 2015; 82:980-991. [PMID: 26590291 DOI: 10.1128/aem.03500-15] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bifidobacteria represent one of the dominant microbial groups that occur in the gut of various animals, being particularly prevalent during the suckling period of humans and other mammals. Their ability to compete with other gut bacteria is largely attributed to their saccharolytic features. Comparative and functional genomic as well as transcriptomic analyses have revealed the genetic background that underpins the overall saccharolytic phenotype for each of the 47 bifidobacterial (sub)species representing the genus Bifidobacterium, while also generating insightful information regarding carbohydrate resource sharing and cross-feeding among bifidobacteria. The abundance of bifidobacterial saccharolytic features in human microbiomes supports the notion that metabolic accessibility to dietary and/or host-derived glycans is a potent evolutionary force that has shaped the bifidobacterial genome.
Collapse
|
18
|
Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015; 6:81. [PMID: 25852737 PMCID: PMC4365749 DOI: 10.3389/fgene.2015.00081] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health.
Collapse
Affiliation(s)
| | | | | | - Nathalie Juge
- The Gut Health and Food Safety Institute Strategic Programme, Institute of Food ResearchNorwich, UK
| |
Collapse
|
19
|
Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9923-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
21
|
Serafini F, Strati F, Ruas-Madiedo P, Turroni F, Foroni E, Duranti S, Milano F, Perotti A, Viappiani A, Guglielmetti S, Buschini A, Margolles A, van Sinderen D, Ventura M. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe 2013; 21:9-17. [PMID: 23523946 DOI: 10.1016/j.anaerobe.2013.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are extensively exploited by the food industry as health-promoting microorganisms. However, very little is known about the molecular mechanisms responsible for these beneficial activities, or the molecular players that sustain their ability to colonize and persist within the human gut. Here, we have investigated the enteric adaptation features of the gut commensal Bifidobacterium bifidum PRL2010, originally isolated from infant feces. This strain was able to survive under gastrointestinal challenges, while it was shown to adhere to human epithelial intestinal cell monolayers (Caco 2 and HT-29), thereby inhibiting adhesion of pathogenic bacteria such as Escherichia coli and Cronobacter sakazakii.
Collapse
Affiliation(s)
- Fausta Serafini
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Members of the genus Bifidobacterium are considered to be important constituents of the microbiota of animals, from insects to mammals. They are gut commensals extensively used by the food industry as probiotic microorganisms, since some strains have been shown to have specific beneficial effects. However, the molecular processes underlying their functional capacities to promote a healthy status in the host, as well as those involved in survival, colonization and persistence of bifidobacteria in the gut, are far from being completely understood. This review summarizes the current knowledge on the mechanisms used by bifidobacteria to cope with gastrointestinal factors and to adapt to them, and discusses the advantages of the adaptive traits acquired by these microorganisms as a consequence of their interactions with the gastrointestinal tract environment, as well as the impact of such adaptations in the functional characteristics of bifidobacteria.
Collapse
|
23
|
Bøhle LA, Mathiesen G, Vaaje-Kolstad G, Eijsink VGH. An endo-β-N-acetylglucosaminidase from Enterococcus faecalis V583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans. FEMS Microbiol Lett 2011; 325:123-9. [PMID: 22093069 DOI: 10.1111/j.1574-6968.2011.02419.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/11/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated previously that Enterococcus faecalis produces secreted endoglycosidases that enable the bacteria to remove N-linked glycans from glycoproteins. One enzyme potentially responsible for this activity is EF0114, comprising a typical GH18 endoglycosidase domain and a GH20 domain. We have analyzed the other candidate, EF2863, and show that this predicted single domain GH18 protein is an endo-β-N-acetylglucosaminidase. EF2863 hydrolyzes the glycosidic bond between two N-acetylglucosamines (GlcNAc) in N-linked glycans of the high-mannose and hybrid type, releasing the glycan and leaving one GlcNAc attached to the protein. The activity of EF2863 is similar to that of the well known deglycosylating enzyme EndoH from Streptomyces plicatus. According to the CAZy nomenclature, the enzyme is designated EfEndo18A.
Collapse
Affiliation(s)
- Liv Anette Bøhle
- Department of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | | | | | | |
Collapse
|