1
|
Borusak S, Denger K, Dorendorf T, Fournier C, Lerner H, Mayans O, Spiteller D, Schleheck D. Anaerobic Faecalicatena spp. degrade sulfoquinovose via a bifurcated 6-deoxy-6-sulfofructose transketolase/transaldolase pathway to both C 2- and C 3-sulfonate intermediates. Front Microbiol 2024; 15:1491101. [PMID: 39712897 PMCID: PMC11659671 DOI: 10.3389/fmicb.2024.1491101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 12/24/2024] Open
Abstract
Plant-produced sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is one of the most abundant sulfur-containing compounds in nature and its bacterial degradation plays an important role in the biogeochemical sulfur and carbon cycles and in all habitats where SQ is produced and degraded, particularly in gut microbiomes. Here, we report the enrichment and characterization of a strictly anaerobic SQ-degrading bacterial consortium that produces the C2-sulfonate isethionate (ISE) as the major product but also the C3-sulfonate 2,3-dihydroxypropanesulfonate (DHPS), with concomitant production of acetate and hydrogen (H2). In the second step, the ISE was degraded completely to hydrogen sulfide (H2S) when an additional electron donor (external H2) was supplied to the consortium. Through growth experiments, analytical chemistry, genomics, proteomics, and transcriptomics, we found evidence for a combination of the 6-deoxy-6-sulfofructose (SF) transketolase (sulfo-TK) and SF transaldolase (sulfo-TAL) pathways in a SQ-degrading Faecalicatena-phylotype (family Lachnospiraceae) of the consortium, and for the ISE-desulfonating glycyl-radical enzyme pathway, as described for Bilophila wadsworthia, in an Anaerospora-phylotype (Sporomusaceae). Furthermore, using total proteomics, a new gene cluster for a bifurcated SQ pathway was also detected in Faecalicatena sp. DSM22707, which grew with SQ in pure culture, producing mainly ISE, but also 3-sulfolacate (SL) 3-sulfolacaldehyde (SLA), acetate, butyrate, succinate, and formate, but not H2. We then reproduced the growth of the consortium with SQ in a defined co-culture model consisting of Faecalicatena sp. DSM22707 and Bilophila wadsworthia 3.1.6. Our findings provide the first description of an additional sulfoglycolytic, bifurcated SQ pathway. Furthermore, we expand on the knowledge of sulfidogenic SQ degradation by strictly anaerobic co-cultures, comprising SQ-fermenting bacteria and cross-feeding of the sulfonate intermediate to H2S-producing organisms, a process in gut microbiomes that is relevant for human health and disease.
Collapse
Affiliation(s)
- Sabrina Borusak
- Department of Biology, University of Konstanz, Konstanz, Germany
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Karin Denger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Fournier
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Harry Lerner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, Konstanz, Germany
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Department of Biology, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F, Wei Y, Zhang Y, Tong Y. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation. iScience 2024; 27:111010. [PMID: 39429772 PMCID: PMC11489063 DOI: 10.1016/j.isci.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Sulfoquinovose (SQ), the polar head group of sulfolipids essential for photosynthesis, is naturally abundant. Anaerobic Firmicutes degrade SQ through a transaldolase-dependent (sulfo-TAL) pathway, producing dihydroxypropanesulfonate (DHPS). Some bacteria extend this pathway by the sequential action of HpfG and HpfD converting DHPS to 3-hydroxypropanesulfonate (3-HPS) via 3-sulfopropionaldehyde (3-SPA). Here, we report a variant sulfo-TAL pathway in Enterococcus gilvus, involving additional enzymes, a NAD+-dependent 3-SPA dehydrogenase HpfX, and a 3-sulfopropionyl-CoA synthetase HpfYZ, which oxidize 3-SPA to 3-sulfopropionate (3-SP) coupled with ATP formation. E. gilvus grown on SQ or DHPS produced a mixture of 3-HPS and 3-SP, indicating the bifurcated pathway. Similar genes are found in various Firmicutes, including gut bacteria. Importantly, 3-SP, but not 3-HPS, can serve as a respiratory terminal electron acceptor for Bilophila wadsworthia, a common intestinal pathobiont, resulting in the production of toxic H2S. This research expands our understanding of sulfonate metabolism and reveals cross-feeding in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiuyi Guo
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Rybina AA, Glushak RA, Bessonova TA, Dakhnovets AI, Rudenko AY, Ozhiganov RM, Kaznadzey AD, Tutukina MN, Gelfand MS. Phylogeny and structural modeling of the transcription factor CsqR (YihW) from Escherichia coli. Sci Rep 2024; 14:7852. [PMID: 38570624 PMCID: PMC10991401 DOI: 10.1038/s41598-024-58492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.
Collapse
Affiliation(s)
- Anna A Rybina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.
| | - Roman A Glushak
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Tatiana A Bessonova
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
| | | | - Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Anna D Kaznadzey
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Maria N Tutukina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| |
Collapse
|
4
|
Li M, Jin M, Zhao L, Yu D, Li Y, Shi L, Zhou B, Liu L, Cao Y, Cai K, Fan J, Nie X, Zhang T, Liu H. Tumor-associated microbiota in colorectal cancer with vascular tumor thrombus and neural invasion and association with clinical prognosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:366-378. [PMID: 37905339 PMCID: PMC10984857 DOI: 10.3724/abbs.2023255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Neural invasion (NI) and vascular tumor thrombus (VT) are associated with poor prognosis in patients with colorectal cancer (CRC). In this study, we apply 16S rRNA amplicon sequencing to tumor tissues and adjacent normal tissues in patients with CRC to determine the microbial differences. A discovery cohort, including 30 patients with NI, 23 with VT, and 35 with double-negative CRC tissue, is utilized. Then, we analyze the relationship between the specific bacterial taxa and indicators of different dimensions in separate cohorts. In the discovery cohort, the diversity and composition of the gut microbiome distinctly differ between the tumor and nontumor tissues in the NI and VT groups. A high abundance of Cupriavidus is found to be related to a short survival time of NI CRC, while Herbaspirillum is a potential microbial biomarker predicting the prognosis of patients with CRC with NI or VT. Moreover, the abundance of Cupriavidus or Herbaspirillum is associated with some clinical patient characteristics and prognosis, respectively. In conclusion, this study is the first to comprehensively elaborate the differences in the gut microbiota of patients with CRC with different invasion statuses and to prove the relationship between some gut microbiota and clinical patient characteristics.
Collapse
Affiliation(s)
- Mingjie Li
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Min Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lei Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dandan Yu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yan Li
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Linli Shi
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bin Zhou
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Li Liu
- of Epidemiology and Biostatisticsthe Ministry of Education Key Lab of Environment and HealthSchool of Public HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yinghao Cao
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Precision Radiation OncologyWuhan430022China
| | - Kailin Cai
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jun Fan
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiu Nie
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tao Zhang
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hongli Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation. OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
5
|
Chu R, Wei Y, Liu J, Li B, Zhang J, Zhou Y, Du Y, Zhang Y. A Variant of the Sulfoglycolytic Transketolase Pathway for the Degradation of Sulfoquinovose into Sulfoacetate. Appl Environ Microbiol 2023; 89:e0061723. [PMID: 37404184 PMCID: PMC10370302 DOI: 10.1128/aem.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfo-glucose) constitutes the polar head group of plant sulfolipids and is one of the most abundantly produced organosulfur compounds in nature. Degradation of SQ by bacterial communities contributes to sulfur recycling in many environments. Bacteria have evolved at least four mechanisms for glycolytic degradation of SQ, termed sulfoglycolysis, producing C3 sulfonate (dihydroxypropanesulfonate and sulfolactate) and C2 sulfonate (isethionate) by-products. These sulfonates are further degraded by other bacteria, leading to the mineralization of the sulfonate sulfur. The C2 sulfonate sulfoacetate is widespread in the environment and is also thought to be a product of sulfoglycolysis, although the mechanistic details are yet unknown. Here, we describe a gene cluster in an Acholeplasma sp., from a metagenome derived from deeply circulating subsurface aquifer fluids (GenBank accession no. QZKD01000037), encoding a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway that produces sulfoacetate instead of isethionate as a by-product. We report the biochemical characterization of a coenzyme A (CoA)-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL), which collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria, adding to the variety of mechanisms by which bacteria metabolize this ubiquitous sulfo-sugar. IMPORTANCE Many bacteria utilize environmentally widespread C2 sulfonate sulfoacetate as a sulfur source, and the disease-linked human gut sulfate- and sulfite-reducing bacteria can use it as a terminal electron receptor for anaerobic respiration generating toxic H2S. However, the mechanism of sulfoacetate formation is unknown, although it has been proposed that sulfoacetate originates from bacterial degradation of sulfoquinovose (SQ), the polar head group of sulfolipids present in all green plants. Here, we describe a variant of the recently discovered sulfoglycolytic transketolase (sulfo-TK) pathway. Unlike the regular sulfo-TK pathway that produces isethionate, our biochemical assays with recombinant proteins demonstrated that a CoA-acylating sulfoacetaldehyde dehydrogenase (SqwD) and an ADP-forming sulfoacetate-CoA ligase (SqwKL) in this variant pathway collectively catalyze the oxidation of the transketolase product sulfoacetaldehyde into sulfoacetate, coupled with ATP formation. A bioinformatics study revealed the presence of this sulfo-TK variant in phylogenetically diverse bacteria and interpreted the widespread existence of sulfoacetate.
Collapse
Affiliation(s)
- Ruoxing Chu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jiayi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Boran Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianing Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Snow AJ, Sharma M, Lingford JP, Zhang Y, W.-Y.Mui J, Epa R, Goddard-Borger ED, Williams SJ, Davies GJ. The sulfoquinovosyl glycerol binding protein SmoF binds and accommodates plant sulfolipids. Curr Res Struct Biol 2022; 4:51-58. [PMID: 35341160 PMCID: PMC8940949 DOI: 10.1016/j.crstbi.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 10/26/2022] Open
|
7
|
Kaur A, van der Peet PL, Mui JWY, Herisse M, Pidot S, Williams SJ. Genome sequences of Arthrobacter spp. that use a modified sulfoglycolytic Embden-Meyerhof-Parnas pathway. Arch Microbiol 2022; 204:193. [PMID: 35201431 PMCID: PMC8873060 DOI: 10.1007/s00203-022-02803-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022]
Abstract
Sulfoglycolysis pathways enable the breakdown of the sulfosugar sulfoquinovose and environmental recycling of its carbon and sulfur content. The prototypical sulfoglycolytic pathway is a variant of the classical Embden–Meyerhof–Parnas (EMP) pathway that results in formation of 2,3-dihydroxypropanesulfonate and was first described in gram-negative Escherichia coli. We used enrichment cultures to discover new sulfoglycolytic bacteria from Australian soil samples. Two gram-positive Arthrobacter spp. were isolated that produced sulfolactate as the metabolic end-product. Genome sequences identified a modified sulfoglycolytic EMP gene cluster, conserved across a range of other Actinobacteria, that retained the core sulfoglycolysis genes encoding metabolic enzymes but featured the replacement of the gene encoding sulfolactaldehyde (SLA) reductase with SLA dehydrogenase, and the absence of sulfoquinovosidase and sulfoquinovose mutarotase genes. Excretion of sulfolactate by these Arthrobacter spp. is consistent with an aerobic saprophytic lifestyle. This work broadens our knowledge of the sulfo-EMP pathway to include soil bacteria.
Collapse
Affiliation(s)
- Arashdeep Kaur
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Phillip L van der Peet
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Janice W-Y Mui
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Marion Herisse
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Sacha Pidot
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proc Natl Acad Sci U S A 2022; 119:2116022119. [PMID: 35074914 PMCID: PMC8795539 DOI: 10.1073/pnas.2116022119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Sulfoquinovose, a sulfosugar derivative of glucose, is produced by most photosynthetic organisms and contains up to half of all sulfur in the biosphere. Several pathways for its breakdown are known, though they provide access to only half of the carbon in sulfoquinovose and none of its sulfur. Here, we describe a fundamentally different pathway within the plant pathogen Agrobacterium tumefaciens that features oxidative desulfurization of sulfoquinovose to access all carbon and sulfur within the molecule. Biochemical and structural analyses of the pathway’s key proteins provided insights how the sulfosugar is recognized and degraded. Genes encoding this sulfoquinovose monooxygenase pathway are present in many plant pathogens and symbionts, alluding to a possible role for sulfoquinovose in plant host–bacteria interactions. Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens. SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.
Collapse
|
9
|
Snow AJD, Burchill L, Sharma M, Davies GJ, Williams SJ. Sulfoglycolysis: catabolic pathways for metabolism of sulfoquinovose. Chem Soc Rev 2021; 50:13628-13645. [PMID: 34816844 DOI: 10.1039/d1cs00846c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sulfoquinovose (SQ), a derivative of glucose with a C6-sulfonate, is produced by photosynthetic organisms and is the headgroup of the sulfolipid sulfoquinovosyl diacylglycerol. The degradation of SQ allows recycling of its elemental constituents and is important in the global sulfur and carbon biogeochemical cycles. Degradation of SQ by bacteria is achieved through a range of pathways that fall into two main groups. One group involves scission of the 6-carbon skeleton of SQ into two fragments with metabolic utilization of carbons 1-3 and excretion of carbons 4-6 as dihydroxypropanesulfonate or sulfolactate that is biomineralized to sulfite/sulfate by other members of the microbial community. The other involves the complete metabolism of SQ by desulfonylation involving cleavage of the C-S bond to release sulfite and glucose, the latter of which can enter glycolysis. The discovery of sulfoglycolytic pathways has revealed a wide range of novel enzymes and SQ binding proteins. Biochemical and structural characterization of the proteins and enzymes in these pathways have illuminated how the sulfonate group is recognized by Nature's catalysts, supporting bioinformatic annotation of sulfoglycolytic enzymes, and has identified functional and structural relationships with the pathways of glycolysis.
Collapse
Affiliation(s)
- Alexander J D Snow
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Laura Burchill
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - Spencer J Williams
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Abstract
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Collapse
Affiliation(s)
- Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology; and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| |
Collapse
|
11
|
Liu Y, Wei Y, Zhou Y, Ang EL, Zhao H, Zhang Y. A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804. Biochem Biophys Res Commun 2020; 533:1109-1114. [PMID: 33036753 DOI: 10.1016/j.bbrc.2020.09.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 01/17/2023]
Abstract
Sulfoquinovose (6-deoxy-6-sulfoglucose, SQ) is a component of sulfolipids found in the photosynthetic membranes of plants and other photosynthetic organisms, and is one of the most abundant organosulfur compounds in nature. Microbial degradation of SQ, termed sulfoglycolysis, constitutes an important component of the biogeochemical sulfur cycle. Two sulfoglycolysis pathways have been reported, with one resembling the Embden-Meyerhof-Parnas (sulfo-EMP) pathway, and the other resembling the Entner-Doudoroff (sulfo-ED) pathway. Here we report a third sulfoglycolysis pathway in the bacterium Bacillus megaterium DSM 1804, in which sulfosugar cleavage is catalyzed by the transaldolase SqvA, which converts 6-deoxy-6-sulfofructose and glyceraldehyde 3-phosphate into fructose -6-phosphate and (S)-sulfolactaldehyde. Variations of this transaldolase-dependent sulfoglycolysis (sulfo-TAL) pathway are present in diverse bacteria, and add to the diversity of mechanisms for the degradation of this abundant organosulfur compound.
Collapse
Affiliation(s)
- Yinbo Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, IL, 61801, USA.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
12
|
Frommeyer B, Fiedler AW, Oehler SR, Hanson BT, Loy A, Franchini P, Spiteller D, Schleheck D. Environmental and Intestinal Phylum Firmicutes Bacteria Metabolize the Plant Sugar Sulfoquinovose via a 6-Deoxy-6-sulfofructose Transaldolase Pathway. iScience 2020; 23:101510. [PMID: 32919372 PMCID: PMC7491151 DOI: 10.1016/j.isci.2020.101510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/04/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Bacterial degradation of the sugar sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) produced by plants, algae, and cyanobacteria, is an important component of the biogeochemical carbon and sulfur cycles. Here, we reveal a third biochemical pathway for primary SQ degradation in an aerobic Bacillus aryabhattai strain. An isomerase converts SQ to 6-deoxy-6-sulfofructose (SF). A novel transaldolase enzyme cleaves the SF to 3-sulfolactaldehyde (SLA), while the non-sulfonated C3-(glycerone)-moiety is transferred to an acceptor molecule, glyceraldehyde phosphate (GAP), yielding fructose-6-phosphate (F6P). Intestinal anaerobic bacteria such as Enterococcus gilvus, Clostridium symbiosum, and Eubacterium rectale strains also express transaldolase pathway gene clusters during fermentative growth with SQ. The now three known biochemical strategies for SQ catabolism reflect adaptations to the aerobic or anaerobic lifestyle of the different bacteria. The occurrence of these pathways in intestinal (family) Enterobacteriaceae and (phylum) Firmicutes strains further highlights a potential importance of metabolism of green-diet SQ by gut microbial communities to, ultimately, hydrogen sulfide.
Collapse
Affiliation(s)
- Benjamin Frommeyer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | | | | | - Buck T. Hanson
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria
| | - Paolo Franchini
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
13
|
A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Appl Environ Microbiol 2020; 86:AEM.00750-20. [PMID: 32444469 DOI: 10.1128/aem.00750-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Rhizobia are nitrogen-fixing bacteria that engage in symbiotic relationships with plant hosts but can also persist as free-living bacteria in the soil and rhizosphere. Here, we show that free-living Rhizobium leguminosarum SRDI565 can grow on the sulfosugar sulfoquinovose (SQ) or the related glycoside SQ-glycerol using a sulfoglycolytic Entner-Doudoroff (sulfo-ED) pathway, resulting in production of sulfolactate (SL) as the major metabolic end product. Comparative proteomics supports the involvement of a sulfo-ED operon encoding an ABC transporter, sulfo-ED enzymes, and an SL exporter. Consistent with an oligotrophic lifestyle, proteomics data revealed little change in expression of the sulfo-ED proteins during growth on SQ versus mannitol, a result confirmed through biochemical assay of sulfoquinovosidase activity in cell lysates. Metabolomics analysis showed that growth on SQ involves gluconeogenesis to satisfy metabolic requirements for glucose-6-phosphate and fructose-6-phosphate. Metabolomics analysis also revealed the unexpected production of small amounts of sulfofructose and 2,3-dihydroxypropanesulfonate, which are proposed to arise from promiscuous activities of the glycolytic enzyme phosphoglucose isomerase and a nonspecific aldehyde reductase, respectively. The discovery of a rhizobium isolate with the ability to degrade SQ builds our knowledge of how these important symbiotic bacteria persist within soil.IMPORTANCE Sulfonate sulfur is a major form of organic sulfur in soils but requires biomineralization before it can be utilized by plants. Very little is known about the biochemical processes used to mobilize sulfonate sulfur. We show that a rhizobial isolate from soil, Rhizobium leguminosarum SRDI565, possesses the ability to degrade the abundant phototroph-derived carbohydrate sulfonate SQ through a sulfoglycolytic Entner-Doudoroff pathway. Proteomics and metabolomics demonstrated the utilization of this pathway during growth on SQ and provided evidence for gluconeogenesis. Unexpectedly, off-cycle sulfoglycolytic species were also detected, pointing to the complexity of metabolic processes within cells under conditions of sulfoglycolysis. Thus, rhizobial metabolism of the abundant sulfosugar SQ may contribute to persistence of the bacteria in the soil and to mobilization of sulfur in the pedosphere.
Collapse
|
14
|
Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A 2020; 117:15599-15608. [PMID: 32571930 DOI: 10.1073/pnas.2003434117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
2(S)-dihydroxypropanesulfonate (DHPS) is a microbial degradation product of 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose), a component of plant sulfolipid with an estimated annual production of 1010 tons. DHPS is also at millimolar levels in highly abundant marine phytoplankton. Its degradation and sulfur recycling by microbes, thus, play important roles in the biogeochemical sulfur cycle. However, DHPS degradative pathways in the anaerobic biosphere are not well understood. Here, we report the discovery and characterization of two O2-sensitive glycyl radical enzymes that use distinct mechanisms for DHPS degradation. DHPS-sulfolyase (HpsG) in sulfate- and sulfite-reducing bacteria catalyzes C-S cleavage to release sulfite for use as a terminal electron acceptor in respiration, producing H2S. DHPS-dehydratase (HpfG), in fermenting bacteria, catalyzes C-O cleavage to generate 3-sulfopropionaldehyde, subsequently reduced by the NADH-dependent sulfopropionaldehyde reductase (HpfD). Both enzymes are present in bacteria from diverse environments including human gut, suggesting the contribution of enzymatic radical chemistry to sulfur flux in various anaerobic niches.
Collapse
|
15
|
Iglesias MJ, Soengas R, Martins CB, Correia MJ, Ferreira JD, Santos LMA, Ortiz FL. Chemotaxonomic Profiling Through NMR 1. JOURNAL OF PHYCOLOGY 2020; 56:521-539. [PMID: 31876290 DOI: 10.1111/jpy.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
A metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The 1 H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols were the major components of the ethyl acetate extracts in a mono- to digalactosyldiacylglycerols ratio of 4.5 estimated by integration of the signals at δ 3.99 and 3.94 ppm (sn3 glycerol methylene). Oligosaccharides of sucrose and mycosporine-like amino acids, among other polar metabolites, were detected in the methanolic extracts. Strains of Nostocales order contained heterocyst glycolipids, whereas sulphoquinovosyldiacylglycerols were absent in one of the studied strains (Microchaete tenera ACOI 1451). Phosphathidylglycerol was identified as the major phospholipid in the methanolic extracts together with minor amounts of phosphatidylcholine based on 1 H, 31 P 2D correlation experiments. Chemotaxonomic information could be easily obtained through the analysis of the δ 3.0-0.5 ppm (fatty acid distribution) and δ 1.2-1.1 ppm (terminal methyl groups of the aglycons in heterocyst glycolipids) regions of the 1 H NMR spectra of the ethyl acetate and methanol extracts, respectively.
Collapse
Affiliation(s)
- María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Clara B Martins
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria João Correia
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana D Ferreira
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lilia M A Santos
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Fernando López Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| |
Collapse
|
16
|
Sharma M, Abayakoon P, Lingford JP, Epa R, John A, Jin Y, Goddard-Borger ED, Davies GJ, Williams SJ. Dynamic Structural Changes Accompany the Production of Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Palika Abayakoon
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| | - James P. Lingford
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ruwan Epa
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan John
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Jin
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Zhang Y, Mui JWY, Arumaperuma T, Lingford JP, Goddard-Borger ED, White JM, Williams SJ. Concise synthesis of sulfoquinovose and sulfoquinovosyl diacylglycerides, and development of a fluorogenic substrate for sulfoquinovosidases. Org Biomol Chem 2020; 18:675-686. [PMID: 31894821 DOI: 10.1039/c9ob02540e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sulfolipid sulfoquinovosyl diacylglycerol (SQDG) and its headgroup, the sulfosugar sulfoquinovose (SQ), are estimated to harbour up to half of all organosulfur in the biosphere. SQ is liberated from SQDG and related glycosides by the action of sulfoquinovosidases (SQases). We report a 10-step synthesis of SQDG that we apply to the preparation of saturated and unsaturated lipoforms. We also report an expeditious synthesis of SQ and (13C6)SQ, and X-ray crystal structures of sodium and potassium salts of SQ. Finally, we report the synthesis of a fluorogenic SQase substrate, methylumbelliferyl α-d-sulfoquinovoside, and examination of its cleavage kinetics by two recombinant SQases. These compounds will assist in dissecting the role of sulfoglycolysis in the biogeochemical sulfur cycle and understanding the molecular basis of sulfoglycolysis.
Collapse
Affiliation(s)
- Yunyang Zhang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Janice W-Y Mui
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Thimali Arumaperuma
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.
| | - James P Lingford
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ethan D Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia and Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute and University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
18
|
Abayakoon P, Epa R, Petricevic M, Bengt C, Mui JWY, van der Peet PL, Zhang Y, Lingford JP, White JM, Goddard-Borger ED, Williams SJ. Comprehensive Synthesis of Substrates, Intermediates, and Products of the Sulfoglycolytic Embden–Meyerhoff–Parnas Pathway. J Org Chem 2019; 84:2901-2910. [DOI: 10.1021/acs.joc.9b00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | - James P. Lingford
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
| | | | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
19
|
Burrichter A, Denger K, Franchini P, Huhn T, Müller N, Spiteller D, Schleheck D. Anaerobic Degradation of the Plant Sugar Sulfoquinovose Concomitant With H 2S Production: Escherichia coli K-12 and Desulfovibrio sp. Strain DF1 as Co-culture Model. Front Microbiol 2018; 9:2792. [PMID: 30546350 PMCID: PMC6278857 DOI: 10.3389/fmicb.2018.02792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Sulfoquinovose (SQ, 6-deoxy-6-sulfoglucose) is produced by plants and other phototrophs and its biodegradation is a relevant component of the biogeochemical carbon and sulfur cycles. SQ is known to be degraded by aerobic bacterial consortia in two tiers via C3-organosulfonates as transient intermediates to CO2, water and sulfate. In this study, we present a first laboratory model for anaerobic degradation of SQ by bacterial consortia in two tiers to acetate and hydrogen sulfide (H2S). For the first tier, SQ-degrading Escherichia coli K-12 was used. It catalyzes the fermentation of SQ to 2,3-dihydroxypropane-1-sulfonate (DHPS), succinate, acetate and formate, thus, a novel type of mixed-acid fermentation. It employs the characterized SQ Embden-Meyerhof-Parnas pathway, as confirmed by mutational and proteomic analyses. For the second tier, a DHPS-degrading Desulfovibrio sp. isolate from anaerobic sewage sludge was used, strain DF1. It catalyzes another novel fermentation, of the DHPS to acetate and H2S. Its DHPS desulfonation pathway was identified by differential proteomics and demonstrated by heterologously produced enzymes: DHPS is oxidized via 3-sulfolactaldehyde to 3-sulfolactate (SL) by two NAD+-dependent dehydrogenases (DhpA, SlaB); the SL is cleaved by an SL sulfite-lyase known from aerobic bacteria (SuyAB) to pyruvate and sulfite. The pyruvate is oxidized to acetate, while the sulfite is used as electron acceptor in respiration and reduced to H2S. In conclusion, anaerobic sulfidogenic SQ degradation was demonstrated as a novel link in the biogeochemical sulfur cycle. SQ is also a constituent of the green-vegetable diet of herbivores and omnivores and H2S production in the intestinal microbiome has many recognized and potential contributions to human health and disease. Hence, it is important to examine bacterial SQ degradation also in the human intestinal microbiome, in relation to H2S production, dietary conditions and human health.
Collapse
Affiliation(s)
- Anna Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Karin Denger
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Huhn
- The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany.,The Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
20
|
Shimada T, Yamamoto K, Nakano M, Watanabe H, Schleheck D, Ishihama A. Regulatory role of CsqR (YihW) in transcription of the genes for catabolism of the anionic sugar sulfoquinovose (SQ) in Escherichia coli K-12. MICROBIOLOGY-SGM 2018; 165:78-89. [PMID: 30372406 DOI: 10.1099/mic.0.000740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The binding sites of YihW, an uncharacterized DeoR-family transcription factor (TF) of Escherichia coli K-12, were identified using Genomic SELEX screening at two closely located sites, one inside the spacer between the bidirectional transcription units comprising the yihUTS operon and the yihV gene, and another one upstream of the yihW gene itself. Recently the YihUTS and YihV proteins were identified as catalysing the catabolism of sulfoquinovose (SQ), a hydrolysis product of sulfoquinovosyl diacylglycerol (SQDG) derived from plants and other photosynthetic organisms. Gel shift assay in vitro and reporter assay in vivo indicated that YihW functions as a repressor for all three transcription units. De-repression of the yih operons was found to be under the control of SQ as inducer, but not of lactose, glucose or galactose. Furthermore, a mode of its cooperative DNA binding was suggested for YihW by atomic force microscopy. Hence, as a regulator of the catabolism of SQ, we renamed YihW as CsqR.
Collapse
Affiliation(s)
- Tomohiro Shimada
- 1Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Kaneyoshi Yamamoto
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| | - Masahiro Nakano
- 4Kyoto University, Institute for Frontier Life and Medical Sciences, Sakyo-ku, Kyoto, Japan
| | - Hiroki Watanabe
- 2Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - David Schleheck
- 5Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Akira Ishihama
- 3Hosei University, Micro-Nano Technology Research Center, Koganei, Tokyo, Japan
| |
Collapse
|
21
|
Celik E, Maczka M, Bergen N, Brinkhoff T, Schulz S, Dickschat JS. Metabolism of 2,3-dihydroxypropane-1-sulfonate by marine bacteria. Org Biomol Chem 2018; 15:2919-2922. [PMID: 28327713 DOI: 10.1039/c7ob00357a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both enantiomers of the sulfoquinovose breakdown product 2,3-dihydroxypropane-1-sulfonate, an important sulfur metabolite produced by marine algae, were synthesised in a 34S-labelled form and used in feeding experiments with marine bacteria. The labelling was efficiently incorporated into the sulfur-containing antibiotic tropodithietic acid and sulfur volatiles by the algal symbiont Phaeobacter inhibens, but not into sulfur volatiles released by marine bacteria associated with crustaceans. The ecological implications and the relevance of these findings for the global sulfur cycle are discussed.
Collapse
Affiliation(s)
- Ersin Celik
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Michael Maczka
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Nils Bergen
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
22
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
23
|
Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem J 2017; 474:827-849. [DOI: 10.1042/bcj20160508] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023]
Abstract
The sulfonated carbohydrate sulfoquinovose (SQ) is produced in quantities estimated at some 10 billion tonnes annually and is thus a major participant in the global sulfur biocycle. SQ is produced by most photosynthetic organisms and incorporated into the sulfolipid sulfoquinovosyl diacylglycerol (SQDG), as well as within some archaea for incorporation into glycoprotein N-glycans. SQDG is found mainly within the thylakoid membranes of the chloroplast, where it appears to be important for membrane structure and function and for optimal activity of photosynthetic protein complexes. SQDG metabolism within the sulfur cycle involves complex biosynthetic and catabolic processes. SQDG biosynthesis is largely conserved within plants, algae and bacteria. On the other hand, two major sulfoglycolytic pathways have been discovered for SQDG degradation, the sulfo-Embden–Meyerhof–Parnas (sulfo-EMP) and sulfo-Entner–Doudoroff (sulfo-ED) pathways, which mirror the major steps in the glycolytic EMP and ED pathways. Sulfoglycolysis produces C3-sulfonates, which undergo biomineralization to inorganic sulfur species, completing the sulfur cycle. This review discusses the discovery and structural elucidation of SQDG and archaeal N-glycans, the occurrence, distribution, and speciation of SQDG, and metabolic pathways leading to the biosynthesis of SQDG and its catabolism through sulfoglycolytic and biomineralization pathways to inorganic sulfur.
Collapse
|
24
|
Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res 2016; 45:D543-D550. [PMID: 27899573 PMCID: PMC5210515 DOI: 10.1093/nar/gkw1003] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.
Collapse
Affiliation(s)
- Ingrid M Keseler
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - César Bonavides-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ron Caspi
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Carol Fulcher
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Anamika Kothari
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | | | | | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Quang Ong
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Suzanne Paley
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Martin Peralta-Gil
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | | | - David A Velázquez-Ramírez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Daniel Weaver
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, Mexico
| | - Ian Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D Karp
- SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
25
|
Speciale G, Jin Y, Davies GJ, Williams SJ, Goddard-Borger ED. YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nat Chem Biol 2016; 12:215-7. [DOI: 10.1038/nchembio.2023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/31/2015] [Indexed: 11/09/2022]
|
26
|
Felux AK, Franchini P, Schleheck D. Permanent draft genome sequence of sulfoquinovose-degrading Pseudomonas putida strain SQ1. Stand Genomic Sci 2015; 10:42. [PMID: 27408681 PMCID: PMC4940961 DOI: 10.1186/s40793-015-0033-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas putida SQ1 was isolated for its ability to utilize the plant sugar sulfoquinovose (6-deoxy-6-sulfoglucose) for growth, in order to define its SQ-degradation pathway and the enzymes and genes involved. Here we describe the features of the organism, together with its draft genome sequence and annotation. The draft genome comprises 5,328,888 bp and is predicted to encode 5,824 protein-coding genes; the overall G + C content is 61.58 %. The genome annotation is being used for identification of proteins that might be involved in SQ degradation by peptide fingerprinting-mass spectrometry.
Collapse
Affiliation(s)
- Ann-Katrin Felux
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Genomics Center Konstanz, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- />Department of Biology, University of Konstanz, Konstanz, Germany
- />Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
27
|
Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc Natl Acad Sci U S A 2015. [PMID: 26195800 DOI: 10.1073/pnas.1507049112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium.
Collapse
|
28
|
Denger K, Weiss M, Felux AK, Schneider A, Mayer C, Spiteller D, Huhn T, Cook AM, Schleheck D. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 2014; 507:114-7. [PMID: 24463506 DOI: 10.1038/nature12947] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023]
Abstract
Sulphoquinovose (SQ, 6-deoxy-6-sulphoglucose) has been known for 50 years as the polar headgroup of the plant sulpholipid in the photosynthetic membranes of all higher plants, mosses, ferns, algae and most photosynthetic bacteria. It is also found in some non-photosynthetic bacteria, and SQ is part of the surface layer of some Archaea. The estimated annual production of SQ is 10,000,000,000 tonnes (10 petagrams), thus it comprises a major portion of the organo-sulphur in nature, where SQ is degraded by bacteria. However, despite evidence for at least three different degradative pathways in bacteria, no enzymic reaction or gene in any pathway has been defined, although a sulphoglycolytic pathway has been proposed. Here we show that Escherichia coli K-12, the most widely studied prokaryotic model organism, performs sulphoglycolysis, in addition to standard glycolysis. SQ is catabolised through four newly discovered reactions that we established using purified, heterologously expressed enzymes: SQ isomerase, 6-deoxy-6-sulphofructose (SF) kinase, 6-deoxy-6-sulphofructose-1-phosphate (SFP) aldolase, and 3-sulpholactaldehyde (SLA) reductase. The enzymes are encoded in a ten-gene cluster, which probably also encodes regulation, transport and degradation of the whole sulpholipid; the gene cluster is present in almost all (>91%) available E. coli genomes, and is widespread in Enterobacteriaceae. The pathway yields dihydroxyacetone phosphate (DHAP), which powers energy conservation and growth of E. coli, and the sulphonate product 2,3-dihydroxypropane-1-sulphonate (DHPS), which is excreted. DHPS is mineralized by other bacteria, thus closing the sulphur cycle within a bacterial community.
Collapse
Affiliation(s)
- Karin Denger
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Weiss
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Ann-Katrin Felux
- Konstanz Research School Chemical Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Alasdair M Cook
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|