1
|
Pilloni G, Cao F, Ruhmel M, Mishra P. Proteins identified through predictive metagenomics as potential biomarkers for the detection of microbiologically influenced corrosion. J Ind Microbiol Biotechnol 2022; 49:kuab068. [PMID: 34543407 PMCID: PMC9113181 DOI: 10.1093/jimb/kuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023]
Abstract
The unpredictability of microbial growth and subsequent localized corrosion of steel can cause significant cost for the oil and gas industry, due to production downtime, repair, and replacement. Despite a long tradition of academic research and industrial experience, microbial corrosion is not yet fully understood and thus not effectively controlled. In particular, biomarkers suitable for diagnosing microbial corrosion which abstain from the detection of the classic signatures of sulfate-reducing bacteria are urgently required. In this study, a natural microbial community was enriched anaerobically with carbon steel coupons and in the presence of a variety of physical and chemical conditions. With the characterization of the microbiome and of its functional properties inferred through predictive metagenomics, a series of proteins were identified as biomarkers in the water phase that could be correlated directly to corrosion. This study provides an opportunity for the further development of a protein-based biomarker approach for effective and reliable microbial corrosion detection and monitoring in the field.
Collapse
Affiliation(s)
- Giovanni Pilloni
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Fang Cao
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Megan Ruhmel
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Pooja Mishra
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| |
Collapse
|
2
|
Chen F, Dong G, Ma X, Wang F, Zhang Y, Xiong E, Wu J, Wang H, Qian Q, Wu L, Yu Y. UMP kinase activity is involved in proper chloroplast development in rice. PHOTOSYNTHESIS RESEARCH 2018; 137:53-67. [PMID: 29392476 PMCID: PMC5999181 DOI: 10.1007/s11120-017-0477-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/27/2017] [Indexed: 05/23/2023]
Abstract
Isolation of leaf-color mutants is important in understanding the mechanisms of chloroplast biogenesis and development. In this study, we identified and characterized a rice (Oryza sativa) mutant, yellow leaf 2 (yl2), exhibiting pale yellow leaves with a few longitudinal white stripes at the early seedling stage then gradually turning yellow. Genetic analyses revealed that YL2 encodes a thylakoid membrane-localized protein with significant sequence similarity to UMP kinase proteins in prokaryotes and eukaryotes. Prokaryotic UMP kinase activity was subsequently confirmed, with YL2 deficiency causing a significant reduction in chlorophyll accumulation and photochemical efficiency. Moreover, YL2 is also light dependent and preferentially expressed in green tissues. Chloroplast development was abnormal in the yl2 mutant, possibly due to reduced accumulation of thylakoid membranes and a lack of normal stroma lamellae. 2D Blue-Native SDS-PAGE and immunoblot analyses revealed a reduction in several subunits of photosynthetic complexes, in particular, the AtpB subunit of ATP synthase, while mRNA levels of corresponding genes were unchanged or increased compared with the wild type. In addition, we observed a significant decrease (ca. 36.3%) in cpATPase activity in the yl2 mutant compared with the wild type. Taken together, our results suggest that UMP kinase activity plays an essential role in chloroplast development and regulating cpATPase biogenesis in rice.
Collapse
Affiliation(s)
- Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Xiaohui Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, Zhejiang, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Jiahuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| |
Collapse
|
3
|
Liu D, Hao K, Wang W, Peng C, Dai Y, Jin R, Xu W, He L, Wang H, Wang H, Zhang L, Wang Q. Rv2629 Overexpression Delays Mycobacterium smegmatis and Mycobacteria tuberculosis Entry into Log-Phase and Increases Pathogenicity of Mycobacterium smegmatis in Mice. Front Microbiol 2017; 8:2231. [PMID: 29187838 PMCID: PMC5694894 DOI: 10.3389/fmicb.2017.02231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of the present study was to explore the potential biological role of Rv2629 in Mycobacterium smegmatis and Mycobacterium tuberculosis.Methods: Recombinant wild type and mutant Rv2629 strains were constructed. Rv2629 expression was evaluated by real-time PCR and western blot. Microarray and interaction network analyses were used to identify the gene interactions associated with wild type and mutant Rv2629. Bacterial growth was assessed in Balb/c mice infected with wild type and mutant Rv2629 strains using CFU assay and histological analysis of the organs. Results: Overexpression of Rv2629 could delay the entry of the Mycobacterium tuberculosis cells into the log-phase, while Rv2629 decreased the number of ribosomes and the expression of uridylate kinase in Mycobacterium smegmatis. The Gene Ontology (GO) and pathway analysis indicated that 122 genes correlated with wild type Rv2629, whereas the Rv2629 mutation led to decrease in the ribosome production, oxidative phosphorylation, and virulence in Mycobacterium tuberculosis. Overexpression of Rv2629 slightly enhanced the drug resistance of Mycobacterium smegmatis to antibiotics, and increased its survival and pathogenicity in Balb/c mice. Conclusion: It is suggested that Rv2629 is involved in the survival of the clinical drug-resistant strain via bacterial growth repression and bacterial persistence induction.
Collapse
Affiliation(s)
- Dan Liu
- Department of Immunology and Pathogen Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Kewei Hao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenjie Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Peng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Dai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruiliang Jin
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxi Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei He
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingzhong Wang
- Shanghai Centre for Clinical Laboratory, Shanghai, China
| |
Collapse
|
4
|
Ford DC, Ireland PM, Bullifent HL, Saint RJ, McAlister EV, Sarkar-Tyson M, Oyston PCF. Construction of an inducible system for the analysis of essential genes in Yersinia pestis. J Microbiol Methods 2014; 100:1-7. [PMID: 24524852 DOI: 10.1016/j.mimet.2014.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/20/2014] [Accepted: 01/25/2014] [Indexed: 01/14/2023]
Abstract
Yersinia pestis, a Gram negative bacterium, causes bubonic and pneumonic plague. Emerging antibiotic resistance in clinical isolates is driving a need to develop novel antibiotics to treat infection by this transmissible and highly virulent pathogen. Proteins required for viability, so called essential genes, are attractive potential therapeutic targets, however, confirmation of essentiality is problematic. For the first time, we report the development of a system that allows the rapid determination of Y. pestis gene essentiality through mutagenesis and inducible expression of a plasmid borne copy of the target gene. Using this approach, we have confirmed the uridine monophosphate kinase PyrH as an essential protein in Y. pestis. This methodology and the tools we have developed will allow the confirmation of other putative essential genes in this dangerous pathogen, and facilitate the identification of novel targets for antimicrobial development.
Collapse
Affiliation(s)
- D C Ford
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | - P M Ireland
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - H L Bullifent
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - R J Saint
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - E V McAlister
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - M Sarkar-Tyson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - P C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
5
|
Uridine monophosphate kinase as potential target for tuberculosis: From target to lead identification. Interdiscip Sci 2014; 5:296-311. [DOI: 10.1007/s12539-013-0180-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/31/2022]
|
6
|
Doig P, Gorseth E, Nash T, Patten A, Gao N, Blackett C. Screening-based discovery of the first novel ATP competitive inhibitors of the Staphylococcus aureus essential enzyme UMP kinase. Biochem Biophys Res Commun 2013; 437:162-7. [PMID: 23806686 DOI: 10.1016/j.bbrc.2013.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
UMP kinase (PyrH) is an essential enzyme found only in bacteria, making it ideal as a target for the discovery of antibacterials. To identify inhibitors of PyrH, an assay employing Staphylococcus aureus PyrH coupled to pyruvate kinase/lactate dehydrogenase was developed and was used to perform a high throughput screen. A validated aminopyrimidine series was identified from screening. Kinetic characterization of this aminopyrimidine indicated it was a competitive inhibitor of ATP. We have shown that HTS can be used to identify potential leads for this novel target, the first ATP competitive inhibitor of PyrH reported.
Collapse
Affiliation(s)
- Peter Doig
- Discovery Sciences, AstraZeneca R&D Boston, Waltham, MA 02451, United States.
| | | | | | | | | | | |
Collapse
|