1
|
Muth-Pawlak D, Kakko L, Kallio P, Aro EM. Interplay between photosynthetic electron flux and organic carbon sinks in sucrose-excreting Synechocystis sp. PCC 6803 revealed by omics approaches. Microb Cell Fact 2024; 23:188. [PMID: 38951789 PMCID: PMC11218172 DOI: 10.1186/s12934-024-02462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Advancing the engineering of photosynthesis-based prokaryotic cell factories is important for sustainable chemical production and requires a deep understanding of the interplay between bioenergetic and metabolic pathways. Rearrangements in photosynthetic electron flow to increase the efficient use of the light energy for carbon fixation must be balanced with a strong carbon sink to avoid photoinhibition. In the cyanobacterium Synechocystis sp. PCC 6803, the flavodiiron protein Flv3 functions as an alternative electron acceptor of photosystem I and represents an interesting engineering target for reorganizing electron flow in attempts to enhance photosynthetic CO2 fixation and increase production yield. RESULTS We have shown that inactivation of Flv3 in engineered sucrose-excreting Synechocystis (S02:Δflv3) induces a transition from photoautotrophic sucrose production to mixotrophic growth sustained by sucrose re-uptake and the formation of intracellular carbon sinks such as glycogen and polyhydroxybutyrate. The growth of S02:Δflv3 exceeds that of the sucrose-producing strain (S02) and demonstrates unforeseen proteomic and metabolomic changes over the course of the nine-day cultivation. In the absence of Flv3, a down-regulation of proteins related to photosynthetic light reactions and CO2 assimilation occurred concomitantly with up-regulation of those related to glycolytic pathways, before any differences in sucrose production between S02 and S02:Δflv3 strains were observed. Over time, increased sucrose degradation in S02:Δflv3 led to the upregulation of respiratory pathway components, such as the plastoquinone reductase complexes NDH-11 and NDH-2 and the terminal respiratory oxidases Cyd and Cox, which transfer electrons to O2. While glycolytic metabolism is significantly up-regulated in S02:Δflv3 to provide energy for the cell, the accumulation of intracellular storage compounds and the increase in respiration serve as indirect sinks for photosynthetic electrons. CONCLUSIONS Our results show that the presence of strong carbon sink in the engineered sucrose-producing Synechocystis S02 strain, operating under high light, high CO2 and salt stress, cannot compensate for the lack of Flv3 by directly balancing the light transducing source and carbon fixing sink reactions. Instead, the cells immediately sense the imbalance, leading to extensive reprogramming of cellular bioenergetic, metabolic and ion transport pathways that favor mixotrophic growth rather than enhancing photoautotrophic sucrose production.
Collapse
Affiliation(s)
- Dorota Muth-Pawlak
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland.
| | - Lauri Kakko
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Pauli Kallio
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| | - Eva-Mari Aro
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FIN-20014, Finland
| |
Collapse
|
2
|
Duperron S, Halary S, Bouly JP, Roussel T, Hugoni M, Bruto M, Oger PM, Duval C, Woo A, Jézéquel D, Ader M, Leboulanger C, Agogué H, Grossi V, Troussellier M, Bernard C. Transcriptomic insights into the dominance of two phototrophs throughout the water column of a tropical hypersaline-alkaline crater lake (Dziani Dzaha, Mayotte). Front Microbiol 2024; 15:1368523. [PMID: 38741748 PMCID: PMC11089139 DOI: 10.3389/fmicb.2024.1368523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Saline-alkaline lakes often shelter high biomasses despite challenging conditions, owing to the occurrence of highly adapted phototrophs. Dziani Dzaha (Mayotte) is one such lake characterized by the stable co-dominance of the cyanobacterium Limnospira platensis and the picoeukaryote Picocystis salinarum throughout its water column. Despite light penetrating only into the uppermost meter, the prevailing co-dominance of these species persists even in light- and oxygen-deprived zones. Here, a depth profile of phototrophs metatranscriptomes, annotated using genomic data from isolated strains, is employed to identify expression patterns of genes related to carbon processing pathways including photosynthesis, transporters and fermentation. The findings indicate a prominence of gene expression associated with photosynthesis, with a peak of expression around 1 m below the surface, although the light intensity is very low and only red and dark red wavelengths can reach it, given the very high turbidity linked to the high biomass of L. platensis. Experiments on strains confirmed that both species do grow under these wavelengths, at rates comparable to those obtained under white light. A decrease in the expression of photosynthesis-related genes was observed in L. platensis with increasing depth, whereas P. salinarum maintained a very high pool of psbA transcripts down to the deepest point as a possible adaptation against photodamage, in the absence and/or very low levels of expression of genes involved in protection. In the aphotic/anoxic zone, expression of genes involved in fermentation pathways suggests active metabolism of reserve or available dissolved carbon compounds. Overall, L. platensis seems to be adapted to the uppermost water layer, where it is probably maintained thanks to gas vesicles, as evidenced by high expression of the gvpA gene. In contrast, P. salinarum occurs at similar densities throughout the water column, with a peak in abundance and gene expression levels which suggests a better adaptation to lower light intensities. These slight differences may contribute to limited inter-specific competition, favoring stable co-dominance of these two phototrophs.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Sébastien Halary
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Jean-Pierre Bouly
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Théotime Roussel
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Myléne Hugoni
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR 5240 Microbiologie Adaptation et Pathogénie, University of Lyon, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Maxime Bruto
- Anses, UMR Mycoplasmoses Animales, VetAgro Sup, Université de Lyon, Marcy-l’Étoile, France
| | - Philippe M. Oger
- Université Claude Bernard Lyon 1, CNRS, INSA de Lyon, UMR 5240 Microbiologie Adaptation et Pathogénie, University of Lyon, Villeurbanne, France
| | - Charlotte Duval
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| | - Anthony Woo
- Pôle Analyse de Données UAR 2700 2AD, Muséum National d’Histoire Naturelle, Paris, France
| | - Didier Jézéquel
- Institut de Physique du Globe de Paris, Université de Paris Cité, CNRS, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon-les-Bains, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris Cité, CNRS, Paris, France
- UMR CARRTEL, INRAE-USMB, Thonon-les-Bains, France
| | | | - Hélène Agogué
- Littoral Environnement et Sociétés, UMR 7266, CNRS La Rochelle Université, La Rochelle, France
| | - Vincent Grossi
- LGL-TPE, UMR 5276, CNRS, ENSL, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d’Histoire Naturelle – CNRS, Paris, France
| |
Collapse
|
3
|
Gonzalez-Nayeck AC, Mohr W, Tang T, Sattin S, Parenteau MN, Jahnke LL, Pearson A. Absence of canonical trophic levels in a microbial mat. GEOBIOLOGY 2022; 20:726-740. [PMID: 35831948 DOI: 10.1111/gbi.12511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
In modern ecosystems, the carbon stable isotope (δ13 C) ratios of consumers generally conform to the principle "you are what you eat, +1‰." However, this metric may not apply to microbial mat systems where diverse communities, using a variety of carbon substrates via multiple assimilation pathways, live in close physical association and phagocytosis is minimal or absent. To interpret the δ13 C record of the Proterozoic and early Paleozoic, when mat-based productivity likely was widespread, it is necessary to understand how a microbially driven producer-consumer structure affects the δ13 C compositions of biomass and preservable lipids. Protein Stable Isotope Fingerprinting (P-SIF) is a recently developed method that allows measurement of the δ13 C values of whole proteins, separated from environmental samples and identified taxonomically via proteomics. Here, we use P-SIF to determine the trophic relationships in a microbial mat sample from Chocolate Pots Hot Springs, Yellowstone National Park (YNP), USA. In this mat, proteins from heterotrophic bacteria are indistinguishable from cyanobacterial proteins, indicating that "you are what you eat, +1‰" is not applicable. To explain this finding, we hypothesize that sugar production and consumption dominate the net ecosystem metabolism, yielding a community in which producers and consumers share primary photosynthate as a common resource. This idea was validated by confirming that glucose moieties in exopolysaccharide were equal in δ13 C composition to both cyanobacterial and heterotrophic proteins, and by confirming that highly 13 C-depleted fatty acids (FAs) of Cyanobacteria dominate the lipid pool, consistent with flux-balance expectations for systems that overproduce primary photosynthate. Overall, the results confirm that the δ13 C composition of microbial biomass and lipids is tied to specific metabolites, rather than to autotrophy versus heterotrophy or to individual trophic levels. Therefore, we suggest that aerobic microbial heterotrophy is simply a case of "you are what you eat."
Collapse
Affiliation(s)
- Ana C Gonzalez-Nayeck
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Wiebke Mohr
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Tiantian Tang
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- State Key Laboratory of Marine Environmental Science (Xiamen University), Xiamen, Fujian, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sarah Sattin
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | | - Linda L Jahnke
- NASA Ames Research Center, Moffett Field, California, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Mueller B, Brocke HJ, Rohwer FL, Dittmar T, Huisman J, Vermeij MJA, de Goeij JM. Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs. Funct Ecol 2022; 36:2104-2118. [PMID: 36247100 PMCID: PMC9543674 DOI: 10.1111/1365-2435.14101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Benjamin Mueller
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
- Department of Oceanography and Sea Grant College ProgramCenter for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Hannah J. Brocke
- Max‐Plank Institute for Marine Microbiology (MPI Bremen)BremenGermany
| | - Forest L. Rohwer
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)University of OldenburgOldenburgGermany
| | - Jef Huisman
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. A. Vermeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| | - Jasper M. de Goeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| |
Collapse
|
5
|
Merz E, Dick GJ, de Beer D, Grim S, Hübener T, Littmann S, Olsen K, Stuart D, Lavik G, Marchant HK, Klatt JM. Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat. Environ Microbiol 2020; 23:1422-1435. [PMID: 33264477 DOI: 10.1111/1462-2920.15345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
Diatoms are among the few eukaryotes known to store nitrate (NO3 - ) and to use it as an electron acceptor for respiration in the absence of light and O2 . Using microscopy and 15 N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 - at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.
Collapse
Affiliation(s)
- Elisa Merz
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Gregory J Dick
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Sharon Grim
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas Hübener
- Department of Botany and Botanical Garden, University of Rostock, Institute of Biosciences, Germany
| | - Sten Littmann
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Kirk Olsen
- Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dack Stuart
- University of Michigan, Cooperative Institute for Great Lakes Research, Ann Arbor, Michigan, USA
| | - Gaute Lavik
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Hannah K Marchant
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany
| | - Judith M Klatt
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, Germany.,Geomicrobiology Lab, Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Klatt JM, Gomez-Saez GV, Meyer S, Ristova PP, Yilmaz P, Granitsiotis MS, Macalady JL, Lavik G, Polerecky L, Bühring SI. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat. THE ISME JOURNAL 2020; 14:3024-3037. [PMID: 32770117 PMCID: PMC7784965 DOI: 10.1038/s41396-020-0734-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.
Collapse
Affiliation(s)
- Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
- Alfred Wegener Institute-Helmholtz Centre for Polar and Marine Sciences, Bremerhaven, Germany
| | - Steffi Meyer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Thünen Institute of Baltic Sea Fisheries, Thünen Institute, Rostock, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael S Granitsiotis
- Research Unit Environmental Genomics, Helmholtz Zentrum Munich, Munich, Germany
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
- DOE, Joint Genome Institute, Lawerence Berkeley National Lab, Berkeley, CA, USA
| | | | - Gaute Lavik
- Biogeochemistry Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lubos Polerecky
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
7
|
Iglesias MJ, Soengas R, Martins CB, Correia MJ, Ferreira JD, Santos LMA, Ortiz FL. Chemotaxonomic Profiling Through NMR 1. JOURNAL OF PHYCOLOGY 2020; 56:521-539. [PMID: 31876290 DOI: 10.1111/jpy.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
A metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The 1 H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols were the major components of the ethyl acetate extracts in a mono- to digalactosyldiacylglycerols ratio of 4.5 estimated by integration of the signals at δ 3.99 and 3.94 ppm (sn3 glycerol methylene). Oligosaccharides of sucrose and mycosporine-like amino acids, among other polar metabolites, were detected in the methanolic extracts. Strains of Nostocales order contained heterocyst glycolipids, whereas sulphoquinovosyldiacylglycerols were absent in one of the studied strains (Microchaete tenera ACOI 1451). Phosphathidylglycerol was identified as the major phospholipid in the methanolic extracts together with minor amounts of phosphatidylcholine based on 1 H, 31 P 2D correlation experiments. Chemotaxonomic information could be easily obtained through the analysis of the δ 3.0-0.5 ppm (fatty acid distribution) and δ 1.2-1.1 ppm (terminal methyl groups of the aglycons in heterocyst glycolipids) regions of the 1 H NMR spectra of the ethyl acetate and methanol extracts, respectively.
Collapse
Affiliation(s)
- María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Clara B Martins
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria João Correia
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana D Ferreira
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lilia M A Santos
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Fernando López Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| |
Collapse
|
8
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Cardoso DC, Cretoiu MS, Stal LJ, Bolhuis H. Seasonal development of a coastal microbial mat. Sci Rep 2019; 9:9035. [PMID: 31227767 PMCID: PMC6588573 DOI: 10.1038/s41598-019-45490-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/30/2019] [Indexed: 11/08/2022] Open
Abstract
Growth and activity of coastal microbial mats is strongly seasonal. The development of these mats starts in early spring and fully maturate during late summer, where after growth ceases and subsequently the mat deteriorates by erosion and decomposition in winter. Here, the composition of the microbial community of three different mats developing along the tidal gradient of the North Sea beach of the Dutch barrier island Schiermonnikoog was analysed. The 16S ribosomal RNA molecules and the associated gene were sequenced in order to obtain the active (RNA) and resident (DNA) community members, respectively. Proteobacteria, Cyanobacteria, and Bacteroidetes dominated the mats during the whole year but considerable differences among these groups were found along the tidal gradient and seasonally when observed at a finer taxonomic resolution. Richness and diversity increased during the year starting from a pioneering community that is gradually succeeded by a more diverse climax community. The initial pioneers consisted of the cold-adapted photoautotrophic cyanobacterium Nodularia sp. and potential cold adapted members of the alphaproteobacterial Loktanella genus. These pioneers were succeeded by, amongst others, cyanobacteria belonging to the genera Leptolyngbya, Lyngbya, and Phormidium. At the upper littoral (Dune site), which was characterized by an extensive salt marsh vegetation, the mats contained a distinct bacterial community that potentially contribute to or benefit from plant decay. This study reports in detail on the seasonal changes and succession of these coastal microbial mat communities and discusses the potential forces that drive these changes.
Collapse
Affiliation(s)
- Daniela Clara Cardoso
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Mariana Silvia Cretoiu
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Lucas J Stal
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
- Freshwater and Marine Ecology (IBED-FAME), University of Amsterdam, Amsterdam, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands.
| |
Collapse
|
10
|
Chi X, Zhang S, Sun H, Duan Y, Qiao C, Luan G, Lu X. Adopting a Theophylline-Responsive Riboswitch for Flexible Regulation and Understanding of Glycogen Metabolism in Synechococcus elongatus PCC7942. Front Microbiol 2019; 10:551. [PMID: 30949148 PMCID: PMC6437101 DOI: 10.3389/fmicb.2019.00551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria are supposed to be promising photosynthetic microbial platforms that recycle carbon dioxide driven into biomass and bioproducts by solar energy. Glycogen synthesis serves as an essential natural carbon sink mechanism, storing a large portion of energy and organic carbon source of photosynthesis. Engineering glycogen metabolism to harness and rewire carbon flow is an important strategy to optimize efficacy of cyanobacteria platforms. ADP-glucose pyrophosphorylase (GlgC) catalyzes the rate-limiting step for glycogen synthesis. However, knockout of glgC fails to promote cell growth or photosynthetic production in cyanobacteria, on the contrary, glgC deficiency impairs cellular fitness and robustness. In this work, we adopted a theophylline-responsive riboswitch to engineer and control glgC expression in Synechococcus elongatus PCC7942 and achieved flexible regulation of intracellular GlgC abundance and glycogen storage. With this approach, glycogen synthesis and glycogen contents in PCC7942 cells could be regulated in a range from about 40 to 300% of wild type levels. In addition, the results supported a positive role of glycogen metabolism in cyanobacteria cellular robustness. When glycogen storage was reduced, cellular physiology and growth under standard conditions was not impaired, while cellular tolerance toward environmental stresses was weakened. While when glycogen synthesis was enhanced, cells of PCC7942 displayed optimized cellular robustness. Our findings emphasize the significance of glycogen metabolism for cyanobacterial physiology and the importance of flexible approaches for engineering and understanding cellular physiology and metabolism.
Collapse
Affiliation(s)
- Xintong Chi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Shanshan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yangkai Duan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Cuncun Qiao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Dalian National Laboratory for Clean Energy, Dalian, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol 2018; 50:65-71. [DOI: 10.1016/j.copbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
12
|
Harrison BK, Myrbo A, Flood BE, Bailey JV. Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles. GEOBIOLOGY 2018; 16:190-202. [PMID: 29350440 DOI: 10.1111/gbi.12271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment-water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.
Collapse
Affiliation(s)
- B K Harrison
- Department of Earth and Atmospheric Sciences, Central Michigan University, Mt. Pleasant, MI, USA
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - A Myrbo
- LacCore/CSDCO, Limnological Research Center, Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - B E Flood
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - J V Bailey
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
13
|
Miranda H, Immerzeel P, Gerber L, Hörnaeus K, Lind SB, Pattanaik B, Lindberg P, Mamedov F, Lindblad P. Sll1783, a monooxygenase associated with polysaccharide processing in the unicellular cyanobacterium Synechocystis PCC 6803. PHYSIOLOGIA PLANTARUM 2017; 161:182-195. [PMID: 28429526 DOI: 10.1111/ppl.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, Δsll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation. Our results suggests Sll1783 to be involved in a mechanism of polysaccharide degradation and uptake and we hypothesize it might function as a sensor for cell density in cyanobacterial cultures.
Collapse
Affiliation(s)
- Hélder Miranda
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Peter Immerzeel
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Lorenz Gerber
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Katarina Hörnaeus
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Sara Bergström Lind
- Department of Chemistry - BMC, Analytical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, SE-751 24, Sweden
| | - Bagmi Pattanaik
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Pia Lindberg
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Fikret Mamedov
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| | - Peter Lindblad
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics and Science for Life Laboratory, Uppsala University, Uppsala, SE-75120, Sweden
| |
Collapse
|
14
|
Tan KWM, Lee YK. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:255. [PMID: 27895709 PMCID: PMC5120525 DOI: 10.1186/s13068-016-0671-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545 Singapore
| |
Collapse
|
15
|
Savakis P, Tan X, Qiao C, Song K, Lu X, Hellingwerf KJ, Branco Dos Santos F. Slr1670 from Synechocystis sp. PCC 6803 Is Required for the Re-assimilation of the Osmolyte Glucosylglycerol. Front Microbiol 2016; 7:1350. [PMID: 27621728 PMCID: PMC5002435 DOI: 10.3389/fmicb.2016.01350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/01/2022] Open
Abstract
When subjected to mild salt stress, the cyanobacterium Synechocystis sp. PCC 6803 produces small amounts of glycerol through an as of yet unidentified pathway. Here, we show that this glycerol is a degradation product of the main osmolyte of this organism, glucosylglycerol (GG). Inactivation of ggpS, encoding the first step of GG-synthesis, abolished de novo synthesis of glycerol, while the ability to hydrolyze exogenously supplied glucoslylglycerol was unimpaired. Inactivation of glpK, encoding glycerol kinase, had no effect on glycerol synthesis. Inactivation of slr1670, encoding a GHL5-type putative glycoside hydrolase, abolished de novo synthesis of glycerol, as well as hydrolysis of GG, and led to increased intracellular concentrations of this osmolyte. Slr1670 therefore presumably displays GG hydrolase activity. A gene homologous to the one encoded by slr1670 occurs in a wide range of cyanobacteria, proteobacteria, and archaea. In cyanobacteria, it co-occurs with genes involved in GG-synthesis.
Collapse
Affiliation(s)
- Philipp Savakis
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Xiaoming Tan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Cuncun Qiao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Kuo Song
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology - Chinese Academy of Sciences Qingdao, China
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
16
|
Chirality Matters: Synthesis and Consumption of the d-Enantiomer of Lactic Acid by Synechocystis sp. Strain PCC6803. Appl Environ Microbiol 2015; 82:1295-1304. [PMID: 26682849 DOI: 10.1128/aem.03379-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production "outcompetes" consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.
Collapse
|
17
|
Simas-Rodrigues C, Villela HDM, Martins AP, Marques LG, Colepicolo P, Tonon AP. Microalgae for economic applications: advantages and perspectives for bioethanol. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4097-108. [PMID: 25873683 DOI: 10.1093/jxb/erv130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Renewable energy has attracted significant interest in recent years as a result of sustainability, environmental impact, and socio-economic considerations. Given existing technological knowledge and based on projections relating to biofuels derived from microalgae, microalgal feedstock is considered to be one of the most important renewable energy sources potentially available for industrial production. Therefore, this review examines microalgal bioethanol technology, which converts biomass from microalgae to fuel, the chemical processes involved, and possible ways of increasing the bioethanol yield, such as abiotic factors and genetic manipulation of fermenting organisms.
Collapse
Affiliation(s)
- Cíntia Simas-Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Helena D M Villela
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Aline P Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Luiza G Marques
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Pio Colepicolo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes, 748, 05508-000, São Paulo, Brazil
| | - Angela P Tonon
- Los Alamos National Laboratory, Bioscience Division, PO Box M888, Los Alamos, NM 87545, USA
| |
Collapse
|
18
|
Brocke HJ, Wenzhoefer F, de Beer D, Mueller B, van Duyl FC, Nugues MM. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci Rep 2015; 5:8852. [PMID: 25747523 PMCID: PMC4649756 DOI: 10.1038/srep08852] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 12/03/2022] Open
Abstract
Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m(-2) h(-1) of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m(-2) h(-1). DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health.
Collapse
Affiliation(s)
- Hannah J. Brocke
- Max Planck Institute for Marine Microbiology (MPI Bremen), Celsiusstr. 1, 28359 Bremen, Germany
- Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany
- CRIOBE – USR 3278, CNRS-EPHE-UPVD, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Frank Wenzhoefer
- Max Planck Institute for Marine Microbiology (MPI Bremen), Celsiusstr. 1, 28359 Bremen, Germany
- Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology (MPI Bremen), Celsiusstr. 1, 28359 Bremen, Germany
| | - Benjamin Mueller
- Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790AB Den Burg, Texel, The Netherlands
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Fleur C. van Duyl
- Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790AB Den Burg, Texel, The Netherlands
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Maggy M. Nugues
- CRIOBE – USR 3278, CNRS-EPHE-UPVD, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
- Laboratoire d'Excellence “CORAIL”
| |
Collapse
|
19
|
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF, Ley RE. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2013; 2:e01102. [PMID: 24137540 PMCID: PMC3787301 DOI: 10.7554/elife.01102] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation 'Melainabacteria'. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI:http://dx.doi.org/10.7554/eLife.01102.001.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Itai Sharon
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omry Koren
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Julia K Goodrich
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, United States
| | - Ruth E Ley
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
20
|
Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P. Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 2007; 31:692-720. [PMID: 17903205 DOI: 10.1111/j.1574-6976.2007.00085.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria may possess two distinct nickel-iron (NiFe)-hydrogenases: an uptake enzyme found in N(2)-fixing strains, and a bidirectional one present in both non-N(2)-fixing and N(2)-fixing strains. The uptake hydrogenase (encoded by hupSL) catalyzes the consumption of the H(2) produced during N(2) fixation, while the bidirectional enzyme (hoxEFUYH) probably plays a role in fermentation and/or acts as an electron valve during photosynthesis. hupSL constitute a transcriptional unit, and are essentially transcribed under N(2)-fixing conditions. The bidirectional hydrogenase consists of a hydrogenase and a diaphorase part, and the corresponding five hox genes are not always clustered or cotranscribed. The biosynthesis/maturation of NiFe-hydrogenases is highly complex, requiring several core proteins. In cyanobacteria, the genes that are thought to affect hydrogenases pleiotropically (hyp), as well as the genes presumably encoding the hydrogenase-specific endopeptidases (hupW and hoxW) have been identified and characterized. Furthermore, NtcA and LexA have been implicated in the transcriptional regulation of the uptake and the bidirectional enzyme respectively. Recently, the phylogenetic origin of cyanobacterial and algal hydrogenases was analyzed, and it was proposed that the current distribution in cyanobacteria reflects a differential loss of genes according to their ecological needs or constraints. In addition, the possibilities and challenges of cyanobacterial-based H(2) production are addressed.
Collapse
Affiliation(s)
- Paula Tamagnini
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|