1
|
Yang MJ, Li MJ, Huang LD, Zhang XW, Huang YY, Gou XY, Chen SN, Yan J, Du P, Sun AH. Response regulator protein CiaR regulates the transcription of ccn-microRNAs and β-lactam antibiotic resistance conversion of Streptococcus pneumoniae. Int J Antimicrob Agents 2025; 65:107387. [PMID: 39566648 DOI: 10.1016/j.ijantimicag.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Streptococcus pneumoniae does not produce β-lactamases, and its reduced susceptibility to β-lactam antibiotics is predominantly caused by mutations of penicillin-binding proteins (PBPs). However, mechanisms of non-PBP mutation-related β-lactam antibiotic resistance in pneumococcal strains remain poorly characterized. METHODS Susceptibility of S. pneumoniae ATCC49619 and its ciaR gene knockout, complemented, or overexpression mutant (ΔciaR, CΔciaR, or ciaROE) to penicillin, cefotaxime, and imipenem was detected using an E-test. Levels of pneumococcal ciaR-mRNA, 5 ccn-microRNAs, and 6 pbps-mRNAs were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Recombinant CiaR (rCiaR) binding to the promoters of ccn-microRNA genes was confirmed using electrophoresis mobility shift and chromatin immunoprecipitation assays. Sequence matching between the ccn-microRNAs and pbps-mRNAs was analyzed using IntaRNA software. RESULTS S. pneumoniae ATCC49619 was sensitive to the 3 β-lactam antibiotics, but overexpression of CiaR, a response regulator protein in 2-component system, caused the increase of MICs against these antibiotics. The ciaROE mutant exhibited the significantly increased transcription of ccn-microRNAs but notably decreased transcription of pbps-mRNAs; conversely, the ΔciaR mutant displayed decreased levels of ccn-microRNAs and increasesed transcription of pbps-mRNAs. rCiaR was able to bind to the promoters of all ccn-microRNA genes in vitro and within cells. The 3 antibiotics at 1/8 minimal inhibitory concentrations caused a significant increase in the ciaR-mRNA and ccn-microRNAs. The mRNA-binding seed sequences in the 5 ccn-microRNAs matched all the promoter-containing sequences of pbps-mRNAs. CONCLUSIONS β-Lactam antibiotics at low concentrations induce non-PBP mutation-related antibiotic resistance conversion of S. pneumoniae by decrease of PBPs through the pathway of CiaR-mediated transcriptional increase of ccn-microRNAs and ccn-microRNA-dependent degradation of pbp-mRNAs.
Collapse
Affiliation(s)
- Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China; The First Hospital of Putian City, Putian Fujian, PR China
| | - Meng-Jie Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China; Yiwu Central Blood Station, Yiwu, Zhejiang, PR China
| | - Xin-Wei Zhang
- The First Affiliated Hospital of Henan University, Kaifeng Henan, PR China
| | - Yan-Ying Huang
- Hangzhou Red Cross Hospital, Hangzhou Zhejiang, PR China
| | - Xiao-Yu Gou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Sui-Ning Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Jie Yan
- Zhejiang Provincial Society for Microbiology, Hangzhou, Zhejiang, PR China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
2
|
Yang Z, Shi L, Wang Y, Zhou D, Zhang C, Lin Y. Unveiling the Potential of Tetrahedral DNA Frameworks in Clinical Medicine: Mechanisms, Advances, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410162. [PMID: 39707665 DOI: 10.1002/smll.202410162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/24/2024] [Indexed: 12/23/2024]
Abstract
As deoxyribonucleic acis (DNA) nanotechnology advances, DNA, a fundamental biological macromolecule, has been employed to treat various clinical diseases. Among the advancements in this field, tetrahedral frameworks nucleic acids (tFNAs) have gained significant attention due to their straightforward design, structural simplicity, low cost, and high yield since their introduction by Turberfield in the early 2000s. Due to its stable spatial structure, tFNAs can resist the impact of innate immune responses on DNA and nuclease activity. Meanwhile, structural programmability of tFNAs allows for the development of static tFNA-based nanomaterials through the engineering of functional oligonucleotides or therapeutic molecules and dynamic tFNAs through the attachment of stimuli-responsive DNA apparatuses. This review first summarizes the key merits of tFNAs, including natural biocompatibility, biodegradability, structural stability, unparalleled programmability, functional diversity, and efficient cellular internalization. Based on these strengths, this review comprehensively analyzes applications of tFNAs in different clinical settings, including orthopedics, stomatology, urinary system diseases, liver-related diseases, tumors, infection, neural system diseases, ophthalmic diseases, and immunoprophylaxis. We also discuss the limitations of tFNAs and the challenges encountered in preclinical studies. This review provides new perspectives for future research and valuable guidance for researchers working in this field.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Shi
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Dongfang Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chao Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, 610041, China
| |
Collapse
|
3
|
Zhang D, Wang W, Song C, Huang T, Chen H, Liu Z, Zhou Y, Wang H. Comparative genomic study of non-typeable Haemophilus influenzae in children with pneumonia and healthy controls. iScience 2024; 27:111330. [PMID: 39650731 PMCID: PMC11625288 DOI: 10.1016/j.isci.2024.111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/24/2024] [Accepted: 10/10/2024] [Indexed: 12/11/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a common pathogen causing respiratory infections, including pneumonia in children, and can also be found in the upper respiratory tracts of asymptomatic individuals. This study examines genomic variations between NTHi strains from healthy children and those from children with acute or chronic community-acquired pneumonia (CAP). Using bacterial genome-wide association studies (bGWAS), we compared these strains to identify key differences. Our analysis revealed that approximately 32% of genes exhibit variations between commensal and pathogenic states. Notably, we identified changes in peptidoglycan biosynthesis pathways and significant virulence factors associated with pneumonia. Furthermore, we observed a significant difference in β-lactam resistance due to PBP3 mutations between the healthy and pneumonia groups, confirmed by the ampicillin susceptibility test and characterized by the mutation pattern D350N, S357N, S385T, L389F. These findings contribute valuable insights into the genomic basis of NTHi pathogenicity and may inform more targeted clinical diagnostics and treatments.
Collapse
Affiliation(s)
- Deming Zhang
- Shantou University Medical College, Shantou University, Shantou, Guangdong 515041, China
- Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, China
| | - Wenjian Wang
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Chunli Song
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Tingting Huang
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Hongyu Chen
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Zihao Liu
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| | - Yiwen Zhou
- Department of Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, China
| | - Heping Wang
- Shantou University Medical College, Shantou University, Shantou, Guangdong 515041, China
- Department of Shenzhen Clinical College of Pediatrics, Shantou University Medical College, Shantou University, Shantou, Guangdong 518038, China
| |
Collapse
|
4
|
Nasu T, Maeda S. Escherichia coli persisters in biofilm can perform horizontal gene transfer by transformation. Biochem Biophys Res Commun 2024; 738:150549. [PMID: 39167960 DOI: 10.1016/j.bbrc.2024.150549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Persisters represent a subset of cells that exhibit transient tolerance to antimicrobials. These persisters can withstand sudden exposure to antimicrobials, even as the majority of normal cells perish. In this study, we have demonstrated the capacity of ampicillin-tolerant and alkali-tolerant persisters to execute horizontal gene transfer via in situ transformation within biofilms. Air-solid biofilms, comprising two Escherichia coli populations each with a distinct plasmid, were formed on agar media. They were treated with lethal doses of ampicillin or NaOH for 24 h, followed by a 1-min glass-ball roll. This process led to a high frequency of horizontal plasmid transfer (10-7-10-6 per cell) from dead cells to surviving persisters within the biofilms. Plasmid transfer was DNase-sensitive and also occurred by adding purified plasmid DNA to plasmid-free biofilms, demonstrating a transformation mechanism. This marks the first evidence of persisters' novel ability for horizontal gene transfer, via transformation.
Collapse
Affiliation(s)
- Tsubasa Nasu
- Graduate School of Humanities and Sciences, Nara Women's University, 630-8506, Kitauoya-nishimachi, Nara, Japan
| | - Sumio Maeda
- Graduate School of Humanities and Sciences, Nara Women's University, 630-8506, Kitauoya-nishimachi, Nara, Japan.
| |
Collapse
|
5
|
Shlosman I, Vettiger A, Bernhardt TG, Kruse AC, Loparo JJ. The hit-and-run of cell wall synthesis: LpoB transiently binds and activates PBP1b through a conserved allosteric switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628440. [PMID: 39713382 PMCID: PMC11661203 DOI: 10.1101/2024.12.13.628440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins. However, the molecular mechanism by which lipoproteins coordinate the spatial recruitment and enzymatic activation of aPBPs remains unclear. Here we use single-molecule FRET and single-particle tracking in E. coli to show that a prototypical lipoprotein activator LpoB triggers site-specific PG synthesis by PBP1b through conformational rearrangements. Once synthesis is initiated, LpoB affinity for PBP1b dramatically decreases and it dissociates from the synthesizing enzyme. Our results suggest that transient allosteric coupling between PBP1b and LpoB directs PG synthesis to areas of low peptidoglycan density, while simultaneously facilitating efficient lipoprotein redistribution to other sites in need of fortification.
Collapse
|
6
|
Laliwala A, Pant A, Svechkarev D, Sadykov MR, Mohs AM. Advancements of paper-based sensors for antibiotic-resistant bacterial species identification. NPJ BIOSENSING 2024; 1:17. [PMID: 39678719 PMCID: PMC11645268 DOI: 10.1038/s44328-024-00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Evolution of antimicrobial-resistant bacterial species is on a rise. This review aims to explore the diverse range of paper-based platforms designed to identify antimicrobial-resistant bacterial species. It highlights the most important targets used for sensor development and examines the applications of nanosized particles used in paper-based sensors. This review also discusses the advantages, limitations, and applicability of various targets and detection techniques for sensing drug-resistant bacterial species using paper-based platforms.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Present Address: Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Ashruti Pant
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| | - Denis Svechkarev
- Department of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109 USA
| | - Marat R. Sadykov
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5900 USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858 USA
| |
Collapse
|
7
|
Shirley JD, Gillingham JR, Nauta KM, Diwakar S, Carlson EE. kinact/ KI Value Determination for Penicillin-Binding Proteins in Live Cells. ACS Infect Dis 2024; 10:4137-4145. [PMID: 39628314 DOI: 10.1021/acsinfecdis.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are covalently inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts peptidoglycan biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity, but can be misleading in the study of time-dependent, covalent inhibitors. Due to this disconnect, the second-order rate constant, kinact/KI, is a more appropriate metric of covalent-inhibitor potency. Despite being the gold standard measurement of potency, kinact/KI values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologues (such as the PBPs). Therefore, we developed a whole-cell kinact/KI assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent, activity-based probe, Bocillin-FL. Our results align with in vitro kinact/KI data and show a comparable relationship to previously established IC50 values. These results support the validity of our in vivo kinact/KI method as a means of obtaining β-lactam potency for a suite of PBPs to enable structure-activity relationship studies.
Collapse
Affiliation(s)
- Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Jacob R Gillingham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Shivani Diwakar
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
- Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
8
|
Liu Y, Fang B, Wuri G, Lan H, Wang R, Sun Y, Zhao W, Hung WL, Zhang M. From Biofilm to Breath: The Role of Lacticaseibacillus paracasei ET-22 Postbiotics in Combating Oral Malodor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27203-27214. [PMID: 39589428 DOI: 10.1021/acs.jafc.4c07381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Previous studies demonstrated that sufferers with halitosis can be significantly improved with Lacticaseibacillus paracasei ET-22 (ET-22) postbiotics intervention. The objectives of this investigation were to identify the primary components responsible for inhibiting oral malodor. This study demonstrated that cell-free supernatants (CFSs) were more effective in inhibiting production of volatile sulfur compounds (VSCs). Untargeted metabolomics identified CFSs as primarily consisting of organic acids, lipids, peptides, and nucleotides. Among the potential active components, phenyllactic acid (PLA) and peptide GP(Hyp)GAG significantly inhibited microbial-induced VSCs production, with VSC concentrations reduced by 42.7% and 44.6%, respectively. Given the correlation between biofilms and halitosis, microstructural changes in biofilms were examined. PLA suppressed the biomass of the biofilm by 41.7%, while the biofilm thickness was reduced from 202.3 to 70.0 μm. GP(Hyp)GAG intervention reduced the abundance of Fusobacterium nucleatum and Streptococcus mutans within the biofilm, and the expression of biofilm-forming genes FadA and Gtfb were also suppressed by 41.8% and 59.4%. Additionally, the VSC production capacities were reduced due to the decrease in VSC producing bacteria (F. nucleatum, Prevotella intermedia, and Solobacterium moorei) and down-regulation of Cdl and Mgl genes. Collectively, the current study proved that PLA and GP(Hyp)GAG may be the main contributors to halitosis inhibition by ET-22 postbiotics.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yuhang Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| |
Collapse
|
9
|
Liu R, Lan H, Yan S, Huang L, Pan D, Wu Y. Penicillin binding proteins-based immunoassay for the selective and quantitative determination of beta-lactam antibiotics. Enzyme Microb Technol 2024; 181:110507. [PMID: 39241682 DOI: 10.1016/j.enzmictec.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
An immunoassay method based on penicillin-binding protein (PBP) was developed for the quantitative determination of 10 kinds of beta-lactam antibiotics (BLAs). First, two kinds of PBPs, which are named PBP1a and PBP2x, were expressed and purified, and they were characterized by SDS-PAGE and western blotting analysis. Then, the binding activity of PBP1a and PBP2x to template BLAs, cefquinome (CEFQ) and ampicillin (AMP), was determined. The effect of the buffer solution system, e.g., pH, ion concentration, and organic solvent, on the immune interaction efficiency between PBPs and BLAs was also evaluated. In the end, the PBP-based immunoassay method was developed and validated for the detection of 10 kinds of BLAs. Under optimal conditions, PBPs exhibited high binding affinity to BLAs. In addition, this method showed a high sensitivity for the detection of 10 kinds of BLAs with the limits of detection from 0.21 to 9.12 ng/mL, which are much lower than their corresponding maximum residual limit of European Union (4-100 ng/mL). Moreover, the developed PBP-immunoassay was employed for BLA detection from milk samples, and satisfactory recoveries (68.9-101.3 %) were obtained.
Collapse
Affiliation(s)
- Rilong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| | - Song Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Lu Huang
- College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition and College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yichun Wu
- Zhoushan Institute for Food and Drug Control, Zhoushan 316012, China
| |
Collapse
|
10
|
Kollár L, Grabrijan K, Hrast Rambaher M, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Boronic acid inhibitors of penicillin-binding protein 1b: serine and lysine labelling agents. J Enzyme Inhib Med Chem 2024; 39:2305833. [PMID: 38410950 PMCID: PMC10901194 DOI: 10.1080/14756366.2024.2305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
11
|
Chiang CY, West NP. The fall of the mycobacterial cell wall: interrogating peptidoglycan synthesis for novel anti-TB agents. PeerJ 2024; 12:e18404. [PMID: 39553715 PMCID: PMC11569785 DOI: 10.7717/peerj.18404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis has been a threat to human health for thousands of years and still leads to millions of deaths each year. TB is a disease that is refractory to treatment, partially due to its capacity for in-host persistence. The cell wall of mycobacteria, rich in mycolic acid, is broadly associated with bacterial persistence together with antimicrobial and immunological resistance. Enzymes for the biosynthesis of bacterial peptidoglycan, an essential component of the cell wall, have been addressed and considered as appealing drug targets in pathogens. Significant effort has been dedicated to finding inhibitors that hinder peptidoglycan biosynthesis, many with demonstrated enzymatic inhibition in vitro being published. One family of critical biosynthetic enzymes are the Mur enzymes, with many enzyme specific inhibitors having been reported. However, a lesser developed strategy which may have positive clinical implications is to take advantage of the common structural and catalytic characteristics among Mur enzymes and to allow simultaneous, multiple Mur inhibition, and avert the development of drug resistance. M. tuberculosis relies on these essential Mur enzymes, with the best-known subset being Mur ligases, but also utilizes unique functions of atypical transpeptidases resulting in peptidoglycan peptide cross-linking beneficial to the bacteria's capacity for chronic persistence in humans. A systematic review is now needed, with an emphasis on M. tuberculosis. The urgent development of novel anti-TB agents to counter rapidly developing drug resistance requires a revisit of the literature, past successes and failures, in an attempt to reveal liabilities in critical cellular functions and drive innovation.
Collapse
Affiliation(s)
- Cheng-Yu Chiang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Ledger EVK, Massey RC. PBP4 is required for serum-induced cell wall thickening and antibiotic tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2024; 68:e0096124. [PMID: 39431816 PMCID: PMC11539222 DOI: 10.1128/aac.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by synthesizing a thick peptidoglycan cell wall, which protects the bacterium from membrane-targeting antimicrobials and the immune response. However, the proteins required for this response were previously unknown. Here, we demonstrate by three independent approaches that the penicillin-binding protein PBP4 is crucial for serum-induced cell wall thickening. First, mutants lacking various non-essential cell wall synthesis enzymes were tested, revealing that a mutant lacking pbp4 was unable to generate a thick cell wall in serum. This resulted in reduced serum-induced tolerance of the pbp4 mutant toward the last resort antibiotic daptomycin relative to wild-type cells. Second, we found that serum-induced cell wall thickening occurred in each of a panel of 134 clinical bacteremia isolates, except for one strain with a naturally occurring mutation that results in an S140R substitution in the active site of PBP4. Finally, inhibition of PBP4 with cefoxitin prevented serum-induced cell wall thickening and the resulting antibiotic tolerance in the USA300 strain and clinical MRSA isolates. Together, this provides a rationale for combining daptomycin with cefoxitin, a PBP4 inhibitor, to potentially improve treatment outcomes for patients with invasive MRSA infections.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruth C. Massey
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Zhou Y, Wang K, Li L, Li H, Tian Q, Ge B, Chi Y, Xu X, Liu S, Han M, Zhou T, Zhu Y, Wang Q, Yu B. A magnetic epitope-imprinted microsphere used for selective separation and rapid detection of SHV-type β-lactamases in bacteria: a novel strategy of antimicrobial resistance detection. J Nanobiotechnology 2024; 22:678. [PMID: 39501279 PMCID: PMC11539605 DOI: 10.1186/s12951-024-02949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The production of β-lactamases is the most prevalent resistance mechanism for β-lactam antibiotics in Gram-negative bacteria. Presently, over 4900 β-lactamases have been discovered, and they are categorized into hundreds of families. In each enzyme family, amino acid substitutions result in subtle changes to enzyme hydrolysis profiles; in contrast, certain conserved sequences retained by all of the family members can serve as important markers for enzyme family identification. RESULTS The SHV family was chosen as the study object. First, a unique 10-mer peptide was identified as SHV family's epitope by an approach of protein fingerprint analysis. Then, an SHV-specific magnetic epitope-imprinted gel polymer (MEI-GP) was prepared by an epitope surface imprinting technique, and its sorption behavior and recognition mechanism for template epitope and SHV were both elaborated. Finally, the MEI-GP was successfully applied to selectively extract SHV from bacteria, and the extracted SHV was submitted to MALDI-TOF MS for specific determination. By following this strategy, other β-lactamase families can also be specifically detected. According to the molecular weight displayed in mass spectra, the kind of β-lactamase and its associated hydrolysis profile on β-lactams can be easily identified. Based on this, an initial drug option scheme can be quickly formulated for antimicrobial therapy. From protein extraction to medication guidance reporting, the mean time to detection (MTTD) was less than 2 h, which is much faster than conventional phenotype-based methods (at least 16-20 h) and gene-based techniques (usually about 8 h). CONCLUSIONS This enzyme-specific detection strategy combined the specificity of epitope imprinting with the sensitivity of mass spectrometry, enabling β-lactamase to be selectively extracted from bacteria and clearly presented in mass spectra. Compared with other drug resistance detection methods, this technique has good specificity, high sensitivity (≤ 15 mg of bacteria), a short MTTD (less than 2 h), and simple operation, and therefore has a broad application prospect in clinical medicine.
Collapse
Affiliation(s)
- Yusun Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Kunqi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lele Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Hui Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuanyuan Chi
- Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Xiaotong Xu
- Department of Pediatric Emergency, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shuhui Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Meng Han
- Qingdao Women and Children's Hospital, Qingdao, 266034, Shandong, China
| | - Tingting Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanqi Zhu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qing Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, Shandong, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
14
|
Longo BM, Trunfio M, Calcagno A. Dual β-lactams for the treatment of Mycobacterium abscessus: a review of the evidence and a call to act against an antibiotic nightmare. J Antimicrob Chemother 2024; 79:2731-2741. [PMID: 39150384 DOI: 10.1093/jac/dkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Mycobacterium abscessus complex is a group of rapidly growing non-tuberculous mycobacteria (NTM), increasingly emerging as opportunistic pathogens. Current treatment options for these microorganisms are limited and associated with a high rate of treatment failure, toxicity and recurrence. In search of new therapeutic strategies, interest has grown in dual β-lactam (DBL) therapy, as research recently discovered that M. abscessus cell wall synthesis is mainly regulated by two types of enzymes (d,d-transpeptidases and l,d-transpeptidases) differently susceptible to inhibition by distinct β-lactams. In vitro studies testing several DBL combinations have shown synergy in extracellular broth cultures as well as in the intracellular setting: cefoxitin/imipenem, ceftaroline/imipenem, ceftazidime/ceftaroline and ceftazidime/imipenem. The addition of specific β-lactamase inhibitors (BLIs) targeting M. abscessus β-lactamase did not significantly enhance the activity of DBL combinations. However, in vivo data are lacking. We reviewed the literature on DBL/DBL-BLI-based therapies for M. abscessus infections to raise greater attention on this promising yet overlooked treatment option and to guide future preclinical and clinical studies.
Collapse
Affiliation(s)
- Bianca Maria Longo
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| | - Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, CA 92037, USA
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
| |
Collapse
|
15
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
16
|
Wang X, Lee JC. Staphylococcus aureus membrane vesicles: an evolving story. Trends Microbiol 2024; 32:1096-1105. [PMID: 38677977 PMCID: PMC11511790 DOI: 10.1016/j.tim.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Staphylococcus aureus is an important bacterial pathogen that causes a wide variety of human diseases in community and hospital settings. S. aureus employs a diverse array of virulence factors, both surface-associated and secreted, to promote colonization, infection, and immune evasion. Over the past decade, a growing body of research has shown that S. aureus generates extracellular membrane vesicles (MVs) that package a variety of bacterial components, many of which are virulence factors. In this review, we summarize recent advances in our understanding of S. aureus MVs and highlight their biogenesis, cargo, and potential role in the pathogenesis of staphylococcal infections. Lastly, we present some emerging questions in the field.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
17
|
Liu X, Boelter G, Vollmer W, Banzhaf M, den Blaauwen T. Peptidoglycan Endopeptidase PBP7 Facilitates the Recruitment of FtsN to the Divisome and Promotes Peptidoglycan Synthesis in Escherichia coli. Mol Microbiol 2024; 122:743-756. [PMID: 39344863 PMCID: PMC11586513 DOI: 10.1111/mmi.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Escherichia coli has many periplasmic hydrolases to degrade and modify peptidoglycan (PG). However, the redundancy of eight PG endopeptidases makes it challenging to define specific roles to individual enzymes. Therefore, the cellular role of PBP7 (encoded by pbpG) is not clearly defined. In this work, we show that PBP7 localizes in the lateral cell envelope and at midcell. The C-terminal α-helix of PBP7 is crucial for midcell localization but not for its activity, which is dispensable for this localization. Additionally, midcell localization of PBP7 relies on the assembly of FtsZ up to FtsN in the divisome, and on the activity of PBP3. PBP7 was found to affect the assembly timing of FtsZ and FtsN in the divisome. The absence of PBP7 slows down the assembly of FtsN at midcell. The ΔpbpG mutant exhibited a weaker incorporation of the fluorescent D-amino acid HADA, reporting on transpeptidase activity, compared to wild-type cells. This could indicate reduced PG synthesis at the septum of the ΔpbpG strain, explaining the slower accumulation of FtsN and suggesting that endopeptidase-mediated PG cleavage may be a rate-limiting step for septal PG synthesis.
Collapse
Affiliation(s)
- Xinwei Liu
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gabriela Boelter
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
18
|
Driche EH, Badji B, Mathieu F, Zitouni A. In-vitro antibacterial and antibiofilm activities and in-silico analysis of a potent cyclic peptide from a novel Streptomyces sp. strain RG-5 against antibiotic-resistant and biofilm-forming pathogenic bacteria. Arch Microbiol 2024; 206:450. [PMID: 39476249 DOI: 10.1007/s00203-024-04174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/10/2024]
Abstract
The proliferation of multidrug-resistant and biofilm-forming pathogenic bacteria poses a serious threat to public health. The limited effectiveness of current antibiotics motivates the search for new antibacterial compounds. In this study, a novel strain, RG-5, was isolated from desert soil. This strain exhibited potent antibacterial and antibiofilm properties against multidrug-resistant and biofilm-forming pathogenic bacteria. Through phenotypical characterizations, 16S rRNA gene sequence and phylogenetic analysis, the strain was identified as Streptomyces pratensis with 99.8% similarity. The active compound, RG5-1, was extracted, purified by reverse phase silica column HPLC, identified by ESI-MS spectrometry, and confirmed by 1H and 13C NMR analysis as 2,5-Piperazinedione, 3,6-bis(2-methylpropyl), belonging to cyclic peptides. This compound showed interesting minimum inhibitory concentrations (MICs) of 04 to 15 µg/mL and minimum biofilm inhibitory concentrations (MBICs 50%) of ½ MIC against the tested bacteria. Its molecular mechanism of action was elucidated through a molecular docking study against five drug-protein targets. The results demonstrated that the compound RG5-1 has a strong affinity and interaction patterns with glucosamine-6-phosphate synthase at - 6.0 kcal/mol compared to reference inhibitor (- 5.4 kcal/mol), medium with penicillin-binding protein 1a (- 6.1 kcal/mol), and LasR regulator protein of quorum sensing (- 5.4 kcal/mol), confirming its antibacterial and antibiofilm activities. The compound exhibited minimal toxicity and favorable physicochemical and pharmacological properties. This is the first report that describes its production from Streptomyces, its activities against biofilm-forming and multidrug-resistant bacteria, and its mechanism of action. These findings indicate that 2,5-piperazinedione, 3,6-bis(2-methylpropyl) has the potential to be a promising lead compound in the treatment of antibiotic-resistant and biofilm-forming pathogens.
Collapse
Affiliation(s)
- El-Hadj Driche
- Laboratory of Molecular Biology, Genomics and Bioinformatics (LBMGB), Department of Biology, Faculty of Nature and Life Sciences (SNV), Hassiba Benbouali University of Chlef, Ouled Fares, Chlef, 02180, Algeria.
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria.
| | - Boubekeur Badji
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria
| | - Florence Mathieu
- Chemical Engineering Laboratory, LGC, UMR 5503 (CNRS/INPT/UPS), University of Toulouse, Toulouse, France
| | - Abdelghani Zitouni
- Laboratory of Biology of Microbial Systems (LBSM), Higher Normal School of Kouba B.P. 92, Kouba, Alger, 16050, Algeria
| |
Collapse
|
19
|
Trouve J, Zapun A, Bellard L, Juillot D, Pelletier A, Freton C, Baudoin M, Carballido-Lopez R, Campo N, Wong YS, Grangeasse C, Morlot C. DivIVA controls the dynamics of septum splitting and cell elongation in Streptococcus pneumoniae. mBio 2024; 15:e0131124. [PMID: 39287436 PMCID: PMC11481917 DOI: 10.1128/mbio.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Bacterial shape and division rely on the dynamics of cell wall assembly, which involves regulated synthesis and cleavage of the peptidoglycan. In ovococci, these processes are coordinated within an annular mid-cell region with nanometric dimensions. More precisely, the cross-wall synthesized by the divisome is split to generate a lateral wall, whose expansion is insured by the insertion of the so-called peripheral peptidoglycan by the elongasome. Septum cleavage and peripheral peptidoglycan synthesis are, thus, crucial remodeling events for ovococcal cell division and elongation. The structural DivIVA protein has long been known as a major regulator of these processes, but its mode of action remains unknown. Here, we integrate click chemistry-based peptidoglycan labeling, direct stochastic optical reconstruction microscopy, and in silico modeling, as well as epifluorescence and stimulated emission depletion microscopy to investigate the role of DivIVA in Streptococcus pneumoniae cell morphogenesis. Our work reveals two distinct phases of peptidoglycan remodeling during the cell cycle that are differentially controlled by DivIVA. In particular, we show that DivIVA ensures homogeneous septum cleavage and peripheral peptidoglycan synthesis around the division site and their maintenance throughout the cell cycle. Our data additionally suggest that DivIVA impacts the contribution of the elongasome and class A penicillin-binding proteins to cell elongation. We also report the position of DivIVA on either side of the septum, consistent with its known affinity for negatively curved membranes. Finally, we take the opportunity provided by these new observations to propose hypotheses for the mechanism of action of this key morphogenetic protein.IMPORTANCEThis study sheds light on fundamental processes governing bacterial growth and division, using integrated click chemistry, advanced microscopy, and computational modeling approaches. It addresses cell wall synthesis mechanisms in the opportunistic human pathogen Streptococcus pneumoniae, responsible for a range of illnesses (otitis, pneumonia, meningitis, septicemia) and for one million deaths every year worldwide. This bacterium belongs to the morphological group of ovococci, which includes many streptococcal and enterococcal pathogens. In this study, we have dissected the function of DivIVA, which is a structural protein involved in cell division, morphogenesis, and chromosome partitioning in Gram-positive bacteria. This work unveils the role of DivIVA in the orchestration of cell division and elongation along the pneumococcal cell cycle. It not only enhances our understanding of how ovoid bacteria proliferate but also offers the opportunity to consider how DivIVA might serve as a scaffold and sensor for particular membrane regions, thereby participating in various cell cycle processes.
Collapse
Affiliation(s)
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Laure Bellard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Dimitri Juillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Anais Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Celine Freton
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | | | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Cecile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
20
|
Jang H, Kim CM, Hong E, Park HH. Fully closed conformation of penicillin-binding protein revealed by structure of PBP2 from Acinetobacter baumannii. Biochem Biophys Res Commun 2024; 729:150368. [PMID: 38986258 DOI: 10.1016/j.bbrc.2024.150368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Penicillin-binding protein 2 (PBP2), a vital protein involved in bacterial cell-wall synthesis, serves a target for β-lactam antibiotics. Acinetobacter baumannii is a pathogen notorious for multidrug resistance; therefore, exploration of PBPs is pivotal in the development of new antimicrobial strategies. In this study, the tertiary structure of PBP2 from A. baumannii (abPBP2) was elucidated using X-ray crystallography. The structural analysis demonstrated notable movement in the head domain, potentially critical for its glycosyltransferase function, suggesting that abPBP2 assumes a fully closed conformation. Our findings offer valuable information for developing novel antimicrobial agents targeting abPBP2 that are applicable in combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Hyunseok Jang
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Min Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Alatawi K, Qarah AF, Alharbi H, Alisaac A, Abualnaja MM, Attar RM, Alsoliemy A, El-Metwaly NM. Synthesis of designed new 1,3,4-oxadiazole functionalized pyrano [2,3-f] chromene derivatives and their antimicrobial activities. Heliyon 2024; 10:e38294. [PMID: 39397992 PMCID: PMC11470616 DOI: 10.1016/j.heliyon.2024.e38294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Diethyl 2-(((4-methyl-2-oxo-2H-chromen-7-yl)oxy)methylene)malonate (2) was synthesized from coumarin 1 and diethyl ethoxymethylene malonate in ethanol, followed by cyclization in diphenyl ether to give chromene-9-carboxylate (3). Sugar hydrazones 5a-c were formed by reacting hydrazide 4 with D-galactose, D-mannose, and D-xylose, then acetylated to per-O-acetyl derivatives 6a-c. Heating 5a-c with acetic anhydride at 100 °C gave oxadiazolines 7a-c. Compound 8, obtained by refluxing 4 with carbon disulfide, was alkylated to 9 or reacted to give 10. Further reactions yielded acetoxy derivative 13 and hydroxy derivative 14. Compounds 17a-e and 18a-e were synthesized using thiomorpholinophenyl ureido/thioureido-s-triazine. These compounds were characterized and evaluated for antibacterial activity against Gram (+ve) bacteria (B. subtilis, S. aureus) and Gram (-ve) bacteria (E. coli, P. aeruginosa) in addition to yeast-like fungi (C. albicans). Compounds 11, 13, 15, 16, 17c-e, and 18a-e showed the highest antibacterial activity. Molecular docking was performed to study their binding with transpeptidases.
Collapse
Affiliation(s)
- Kahdr Alatawi
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Al Baha, 65779, Saudi Arabia
| | - Ahmad Fawzi Qarah
- Department of Chemistry, College of Science, Taibah University, Madinah, P. O. Box 344, Saudi Arabia
| | - Haifa Alharbi
- Department of Chemistry, College of Science, Northern Border University, Saudi Arabia
| | - Ali Alisaac
- Department of laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Saudi Arabia
| | - Matokah M. Abualnaja
- Department of Chemistry, Collage of Science, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| | - Roba M.S. Attar
- Department of Biological Sciences/ Microbiology, Faculty of Science, University of Jeddah, P. O. Box 21959, Saudi Arabia
| | - Amerah Alsoliemy
- Department of Chemistry, Collage of Science, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department of Chemistry, Collage of Science, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street 35516, Egypt
| |
Collapse
|
22
|
Wen Q, Chen X, Xu M, Liu R, Lian W, Ma Y, Ibrahim AA. Selection and characterization of spontaneous phage-resistant mutant of Limosilactobacillus fermentum. Int J Food Microbiol 2024; 423:110833. [PMID: 39079450 DOI: 10.1016/j.ijfoodmicro.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 08/18/2024]
Abstract
Phage infection remains a major cause of fermentation failures in the dairy industry. The development of phage-resistant mutants of important fermentation strains is an effective measure used to address phage-related issues. This study employed the secondary culture method to screen for spontaneous phage-resistant mutants from the phage sensitive strain Limosilactobacillus fermentum IMAU32646 (L. fermentum IMAU32646). The phenotypic characteristics, technological attributes, probiotic characterization, adsorption characteristics and mutant genes were investigated. The results showed that the mutant strain displayed a high degree of phage-resistance and stability. The mutant strain produced more lactic acid during fermentation than the sensitive strain, while maintaining identical cell structure and morphologies. The mutant strain exhibited superior tolerance to acid and bile salts compared to the sensitive strain. Furthermore, the adsorption rate of phage LFP01 on the mutant strain was significantly lower than that of the sensitive strain. Following genome re-sequencing analysis showed that adsorption interference and blocked DNA injection were responsible for its phage-resistance. These results may provide a new strategy for avoiding phage contamination and industrial application of phage-resistant strains with good characteristics.
Collapse
Affiliation(s)
- Qiannan Wen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Ming Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Runze Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqi Lian
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yang Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Amel A Ibrahim
- Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
23
|
Shrestha S, Dressler JM, McNellis ME, Shen A. Penicillin-binding proteins exhibit catalytic redundancy during asymmetric cell division in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615255. [PMID: 39386573 PMCID: PMC11463367 DOI: 10.1101/2024.09.26.615255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Peptidoglycan synthesis is an essential driver of bacterial growth and division. The final steps of this crucial process involve the activity of SEDS family glycosyltransferases that polymerize glycan strands and class B penicillin-binding protein (bPBP) transpeptidases that cross-link them. While most bacteria encode multiple bPBPs that perform specialized roles during specific cellular processes, some bPBPs can play redundant roles that are important for resistance against certain cell wall stresses. Our understanding of these compensatory mechanisms, however, remains incomplete. Endospore-forming bacteria typically encode multiple bPBPs that drive morphological changes required for sporulation. The sporulation-specific bPBP, SpoVD, is important for synthesizing the asymmetric division septum and spore cortex peptidoglycan during sporulation in the pathogen Clostridioides difficile. Although SpoVD catalytic activity is essential for cortex synthesis, we show that it is unexpectedly dispensable for SpoVD to mediate asymmetric division. The dispensability of SpoVD's catalytic activity requires the presence of its SEDS partner, SpoVE, and is facilitated by the catalytic activity of another sporulation-specific bPBP, PBP3. Our data further suggest that PBP3 interacts with components of the asymmetric division machinery, including SpoVD. These findings suggest a possible mechanism by which bPBPs can be functionally redundant in diverse bacteria and facilitate antibiotic resistance.
Collapse
Affiliation(s)
- Shailab Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Jules M. Dressler
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Morgan E. McNellis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Nägeli M, Rodriguez S, Manson AL, Earl AM, Brennan-Krohn T. Rapid Emergence of Resistance to Broad-Spectrum Direct Antimicrobial Activity of Avibactam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615047. [PMID: 39386481 PMCID: PMC11463622 DOI: 10.1101/2024.09.25.615047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Avibactam (AVI) is a diazabicyclooctane (DBO) β-lactamase inhibitor used clinically in combination with ceftazidime. At concentrations higher than those typically achieved in vivo, it also has broad-spectrum direct antibacterial activity against Enterobacterales strains, including metallo-β-lactamase-producing isolates, mediated by inhibition of penicillin-binding protein 2 (PBP2). This activity is mechanistically similar to that of more potent novel DBOs (zidebactam, nacubactam) in late clinical development. We found that resistance to AVI emerged readily, with a mutation frequency of 2×10-6 to 8×10-5. Whole genome sequencing of resistant isolates revealed a heterogeneous mutational target that permitted bacterial survival and replication despite PBP2 inhibition, in line with prior studies of PBP2-targeting drugs. While such mutations are believed to act by upregulating the bacterial stringent response, we found a similarly high mutation frequency in bacteria deficient in components of the stringent response, although we observed a different set of mutations in these strains. Although avibactam-resistant strains had increased lag time, suggesting a fitness cost that might render them less problematic in clinical infections, there was no statistically significant difference in growth rates between susceptible and resistant strains. The finding of rapid emergence of resistance to avibactam as the result of a large mutational target has important implications for novel DBOs with potent direct antibacterial activity, which are being developed with the goal of expanding cell wall-active treatment options for multidrug-resistant gram-negative infections but may be vulnerable to treatment-emergent resistance.
Collapse
Affiliation(s)
- Michelle Nägeli
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Abigail L. Manson
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashlee M. Earl
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Smith HG, Basak S, Aniebok V, Beech MJ, Alshref FM, Allen MD, Farley AJM, Schofield CJ. Structural basis of Pseudomonas aeruginosa penicillin binding protein 3 inhibition by the siderophore-antibiotic cefiderocol. Chem Sci 2024:d4sc04937c. [PMID: 39328188 PMCID: PMC11423509 DOI: 10.1039/d4sc04937c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
The breakthrough cephalosporin cefiderocol, approved for clinical use in 2019, has activity against many Gram-negative bacteria. The catechol group of cefiderocol enables it to efficiently enter bacterial cells via the iron/siderophore transport system thereby reducing resistance due to porin channel mutations and efflux pump upregulation. Limited information is reported regarding the binding of cefiderocol to its key proposed target, the transpeptidase penicillin binding protein 3 (PBP3). We report studies on the reaction of cefiderocol and the related cephalosporins ceftazidime and cefepime with Pseudomonas aeruginosa PBP3, including inhibition measurements, protein observed mass spectrometry, and X-ray crystallography. The three cephalosporins form analogous 3-exomethylene products with P. aeruginosa PBP3 following elimination of the C3' side chain. pIC50 and k inact/K i measurements with isolated PBP3 imply ceftazidime and cefiderocol react less efficiently than cefepime and, in particular, meropenem with P. aeruginosa PBP3. Crystal structures inform on conserved and different interactions involved in binding of the three cephalosporins and meropenem to P. aeruginosa PBP3. The results will aid development of cephalosporins with improved PBP3 inhibition properties.
Collapse
Affiliation(s)
- Helen G Smith
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Shyam Basak
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Victor Aniebok
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Beech
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Faisal M Alshref
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Department of Biochemistry, Faculty of Science, King AbdulAziz University Jeddah Saudi Arabia
| | - Mark D Allen
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Alistair J M Farley
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
- Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
26
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Nelson ME, Little JL, Kristich CJ. Pbp4 provides transpeptidase activity to the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in Enterococcus faecalis. Antimicrob Agents Chemother 2024; 68:e0055524. [PMID: 39058024 PMCID: PMC11373202 DOI: 10.1128/aac.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Enterococci exhibit intrinsic resistance to cephalosporins, mediated in part by the class B penicillin-binding protein (bPBP) Pbp4 that exhibits low reactivity toward cephalosporins and thus can continue crosslinking peptidoglycan despite exposure to cephalosporins. bPBPs partner with cognate SEDS (shape, elongation, division, and sporulation) glycosyltransferases to form the core catalytic complex of peptidoglycan synthases that synthesize peptidoglycan at discrete cellular locations, although the SEDS partner for Pbp4 is unknown. SEDS-bPBP peptidoglycan synthases of enterococci have not been studied, but some SEDS-bPBP pairs can be predicted based on sequence similarity. For example, FtsW (SEDS)-PbpB (bPBP) is predicted to form the catalytic core of the peptidoglycan synthase that functions at the division septum (the divisome). However, PbpB is readily inactivated by cephalosporins, raising the question-how could the FtsW-PbpB synthase continue functioning to enable growth in the presence of cephalosporins? In this work, we report that the FtsW-PbpB peptidoglycan synthase is required for cephalosporin resistance of Enterococcus faecalis, despite the fact that PbpB is inactivated by cephalosporins. Moreover, Pbp4 associates with the FtsW-PbpB synthase and the TPase activity of Pbp4 is required to enable growth in the presence of cephalosporins in an FtsW-PbpB-synthase-dependent manner. Overall, our results implicate a model in which Pbp4 directly interacts with the FtsW-PbpB peptidoglycan synthase to provide TPase activity during cephalosporin treatment, thereby maintaining the divisome SEDS-bPBP peptidoglycan synthase in a functional state competent to synthesize crosslinked peptidoglycan. These results suggest that two bPBPs coordinate within the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in E. faecalis.
Collapse
Affiliation(s)
- Madison E Nelson
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime L Little
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
28
|
Anand A, Verma A, Kaur S, Kathayat P, Manoj RM, Aakanksha A, Turzin JK, Satapathy P, Khatib MN, Gaidhane S, Zahiruddin QS, Kukreti N, Rustagi S, Surana A. An overview of sulbactam-durlobactam approval and implications in advancing therapeutics for hospital-acquired and ventilator-associated pneumonia by acinetobacter baumannii-calcoaceticus complex: A narrative review. Health Sci Rep 2024; 7:e70066. [PMID: 39257909 PMCID: PMC11386240 DOI: 10.1002/hsr2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Infections caused by Acinetobacter baumannii, particularly those resistant to antibiotics such as carbapenem, have become a global health crisis with a significant mortality rate. Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) resulting from the A. baumannii-calcoaceticus (ABC) complex represent a major clinical challenge. This review aimed to understand the approval process, mechanism of action, therapeutic potential, and future implications of sulbactam-durlobactam therapy (SUL-DUR). Methods PubMed, Web of Science, EMBASE, Clinical trials. gov, ICTRP, and CENTRAL were searched for studies on SUL-DUR for the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia. Also, World Health Organization, U.S. Food and Drug Administration, and Centers for Disease Control and Prevention websites were searched for relevant information. Results SUL-DUR, marketed as Xacduro, is a novel pharmaceutical combination that functions as a narrow-spectrum parenterally administered antibiotic. Sulbactam acts as a β-lactamase inhibitor, whereas durlobactam protects against degradation by A. baumannii enzymes. A phase 1 trial successfully established the safety and tolerability of SUL-DUR in patients with normal and mild renal impairment. A phase 2 trial demonstrated the safety and tolerability of SUL-DUR in a larger population with urinary tract infections. A phase 3 trial showed that SUL-DUR was non-inferior to colistin in terms of mortality in A. baumannii-related VAP, HAP, and bacteremia. Conclusion The combination of sulbactam and durlobactam is a promising treatment option for HAP and VAP caused by ABC complex.
Collapse
Affiliation(s)
- Ayush Anand
- B. P. Koirala Institute of Health Sciences Dharan Nepal
- MediSurg Research Darbhanga India
- Global Consortium of Medical Education and Research Pune India
| | - Amogh Verma
- Rama Medical College Hospital and Research Centre Hapur India
| | - Sarabjeet Kaur
- Global Consortium of Medical Education and Research Pune India
- Government Medical College Patiala India
| | - Priyangi Kathayat
- Global Consortium of Medical Education and Research Pune India
- Smt. NHL Municipal Medical College Ahmedabad India
| | - Rachel M Manoj
- Global Consortium of Medical Education and Research Pune India
- Nicolae Testemițanu State University of Medicine and Pharmacy Chisinau Moldova
| | - Aakanksha Aakanksha
- Global Consortium of Medical Education and Research Pune India
- Tbilisi State Medical University Tbilisi Georgia
| | - Justice K Turzin
- Global Consortium of Medical Education and Research Pune India
- Department of Biomedical Science, College of Health and Allied Sciences University of Cape Coast Cape Coast Ghana
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospital Saveetha University Chennai India
- Medical Laboratories Techniques Department AL-Mustaqbal University Hillah Iraq
| | - Mahalaqua N Khatib
- Division of Evidence Synthesis, Datta Meghe Institute of Higher Education Global Consortium of Public Health and Research Wardha India
| | - Shilpa Gaidhane
- Datta Meghe Institute of Higher Education and Research Jawaharlal Nehru Medical College Wardha India
| | - Quazi S Zahiruddin
- Division of Evidence Synthesis, Datta Meghe Institute of Higher Education South Asia Infant Feeding Research Network (SAIFRN), Global Consortium of Public Health and Research Wardha India
| | - Neelima Kukreti
- School of Pharmacy Graphic Era Hill University Dehradun India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences Uttaranchal University Dehradun India
| | - Arihant Surana
- Department of Internal Medicine St. Vincent Hospital Worcester Massachusetts USA
| |
Collapse
|
29
|
Zhydzetski A, Głowacka-Grzyb Z, Bukowski M, Żądło T, Bonar E, Władyka B. Agents Targeting the Bacterial Cell Wall as Tools to Combat Gram-Positive Pathogens. Molecules 2024; 29:4065. [PMID: 39274911 PMCID: PMC11396672 DOI: 10.3390/molecules29174065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The cell wall is an indispensable element of bacterial cells and a long-known target of many antibiotics. Penicillin, the first discovered beta-lactam antibiotic inhibiting the synthesis of cell walls, was successfully used to cure many bacterial infections. Unfortunately, pathogens eventually developed resistance to it. This started an arms race, and while novel beta-lactams, either natural or (semi)synthetic, were discovered, soon upon their application, bacteria were developing resistance. Currently, we are facing the threat of losing the race since more and more multidrug-resistant (MDR) pathogens are emerging. Therefore, there is an urgent need for developing novel approaches to combat MDR bacteria. The cell wall is a reasonable candidate for a target as it differentiates not only bacterial and human cells but also has a specific composition unique to various groups of bacteria. This ensures the safety and specificity of novel antibacterial agents that target this structure. Due to the shortage of low-molecular-weight candidates for novel antibiotics, attention was focused on peptides and proteins that possess antibacterial activity. Here, we describe proteinaceous agents of various origins that target bacterial cell wall, including bacteriocins and phage and bacterial lysins, as alternatives to classic antibiotic candidates for antimicrobial drugs. Moreover, advancements in protein chemistry and engineering currently allow for the production of stable, specific, and effective drugs. Finally, we introduce the concept of selective targeting of dangerous pathogens, exemplified by staphylococci, by agents specifically disrupting their cell walls.
Collapse
Affiliation(s)
- Aliaksandr Zhydzetski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Zuzanna Głowacka-Grzyb
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Tomasz Żądło
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa St. 7, 30-348 Cracow, Poland
| |
Collapse
|
30
|
Fatima N, Khalid S, Rasool N, Imran M, Parveen B, Kanwal A, Irimie M, Ciurea CI. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals (Basel) 2024; 17:1108. [PMID: 39338273 PMCID: PMC11434895 DOI: 10.3390/ph17091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Some antibiotics that are frequently employed are β-lactams. In light of the hydrolytic process of β-lactamase, found in Gram-negative bacteria, inhibitors of β-lactamase (BLIs) have been produced. Examples of first-generation β-lactamase inhibitors include sulbactam, clavulanic acid, and tazobactam. Many kinds of bacteria immune to inhibitors have appeared, and none cover all the β-lactamase classes. Various methods have been utilized to develop second-generation β-lactamase inhibitors possessing new structures and facilitate the formation of diazabicyclooctane (DBO), cyclic boronate, metallo-, and dual-nature β-lactamase inhibitors. This review describes numerous promising second-generation β-lactamase inhibitors, including vaborbactam, avibactam, and cyclic boronate serine-β-lactamase inhibitors. Furthermore, it covers developments and methods for synthesizing MβL (metallo-β-lactamase inhibitors), which are clinically effective, as well as the various dual-nature-based inhibitors of β-lactamases that have been developed. Several combinations are still only used in preclinical or clinical research, although only a few are currently used in clinics. This review comprises materials on the research progress of BLIs over the last five years. It highlights the ongoing need to produce new and unique BLIs to counter the appearance of multidrug-resistant bacteria. At present, second-generation BLIs represent an efficient and successful strategy.
Collapse
Affiliation(s)
- Noor Fatima
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Bushra Parveen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Marius Irimie
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| | - Codrut Ioan Ciurea
- Faculty of Medicine, Transylvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
31
|
Bollinger KW, Müh U, Ocius KL, Apostolos AJ, Pires MM, Helm RF, Popham DL, Weiss DS, Ellermeier CD. Identification of a family of peptidoglycan transpeptidases reveals that Clostridioides difficile requires noncanonical cross-links for viability. Proc Natl Acad Sci U S A 2024; 121:e2408540121. [PMID: 39150786 PMCID: PMC11348318 DOI: 10.1073/pnas.2408540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024] Open
Abstract
Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created by L,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogen Clostridioides difficile, about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability in C. difficile. We also show that C. difficile has five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non-C. difficile VanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability in C. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs in C. difficile makes them potential targets for antibiotics that kill C. difficile selectively.
Collapse
Affiliation(s)
- Kevin W. Bollinger
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Ute Müh
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | | | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA22904
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - David S. Weiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Graduate Program in Genetics, University of Iowa, Iowa City, IA52242
| |
Collapse
|
32
|
Denizon M, Hong E, Terrade A, Taha MK, Deghmane AE. A Hunt for the Resistance of Haemophilus influnezae to Beta-Lactams. Antibiotics (Basel) 2024; 13:761. [PMID: 39200061 PMCID: PMC11352139 DOI: 10.3390/antibiotics13080761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Infections due to Haemophilus influnezae require prompt treatment using beta-lactam antibiotics. We used a collection of 81 isolates obtained between 1940 and 2001 from several countries. Whole genome sequencing showed the high heterogeneity of these isolates but allowed us to track the acquisition of beta-lactamase, which was first detected in 1980. Modifications of the ftsI gene encoding the penicillin-binding protein 3, PBP3, also involved in resistance to beta-lactams, appeared in 1991. These modifications (G490E, A502V, R517H, and N526K) were associated with resistance to amoxicillin that was not relieved by a beta-lactamase inhibitor (clavulanic acid), but the isolates retained susceptibility to third-generation cephalosporins (3GC). The modeling of the PBP3 structure suggested that these modifications may reduce the accessibility to the PBP3 active site. Other modifications appeared in 1998 and were associated with resistance to 3GC (S357N, M377I, S385T, and L389F). Modeling of the PBP3 structure suggested that they lie near the S379xN motif of the active site of PBP3. Overall resistance to amoxicillin was detected among 25 isolates (30.8%) of this collection. Resistance to sulfonamides was predicted by a genomic approach from the sequences of the folP gene (encoding the dihydropteroate synthase) due to difficulties in interpreting phenotypic anti-microbial testing and found in 13 isolates (16.0%). Our data suggest a slower spread of resistance to sulfonamides, which may be used for the treatment of H. influnezae infections. Genomic analysis may help in the prediction of antibiotic resistance, inform structure-function analysis, and guide the optimal use of antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ala-Eddine Deghmane
- Institut Pasteur, Université Paris Cité, Invasive Bacterial Infections Unit and National Reference Centre for Meningococci and Haemophilus influenzae, 28 Rue du Dr. Roux, CEDEX 15, 75724 Paris, France (M.-K.T.)
| |
Collapse
|
33
|
Bai H, Liu T, Wang H, Wang Z. Antibacterial characteristics and mechanistic insights of combined tea polyphenols, Nisin, and epsilon-polylysine against feline oral pathogens: a comprehensive transcriptomic and metabolomic analysis. J Appl Microbiol 2024; 135:lxae189. [PMID: 39066499 DOI: 10.1093/jambio/lxae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
AIMS This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.
Collapse
Affiliation(s)
- Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Hengyan Wang
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu 241200, PR China
| |
Collapse
|
34
|
Duda AM, Ma HR, Villalobos CA, Kuhn SA, He K, Seay SR, Jackson AC, Suh CM, Puccio EA, Anderson DJ, Fowler VG, You L, Franz KJ. An engineered prodrug selectively suppresses β-lactam resistant bacteria in a mixed microbial setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606422. [PMID: 39131315 PMCID: PMC11312599 DOI: 10.1101/2024.08.02.606422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The rise of β-lactam resistance necessitates new strategies to combat bacterial infections. We purposefully engineered the β-lactam prodrug AcephPT to exploit β-lactamase activity to selectively suppress resistant bacteria producing extended-spectrum-β-lactamases (ESBLs). Selective targeting of resistant bacteria requires avoiding interaction with penicillin-binding proteins, the conventional targets of β-lactam antibiotics, while maintaining recognition by ESBLs to activate AcephPT only in resistant cells. Computational approaches provide a rationale for structural modifications to the prodrug to achieve this biased activity. We show AcephPT selectively suppresses gram-negative ESBL-producing bacteria in clonal populations and in mixed microbial cultures, with effective selectivity for both lab strains and clinical isolates expressing ESBLs. Time-course NMR experiments confirm hydrolytic activation of AcephPT exclusively by ESBL-producing bacteria. In mixed microbial cultures, AcephPT suppresses proliferation of ESBL-producing strains while sustaining growth of β-lactamase-non-producing bacteria, highlighting its potential to combat β-lactam resistance while promoting antimicrobial stewardship.
Collapse
Affiliation(s)
- Addison M. Duda
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Helena R. Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - César A. Villalobos
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Sophia A. Kuhn
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Katherine He
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Sarah R. Seay
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Elena A. Puccio
- Department of Chemistry, Duke University, Durham, NC 27710, USA
| | - Deverick J. Anderson
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
35
|
Kamel Qalalweh NM. Novel Modified Piperacillin Inhibitors of Penicillin-Binding Protein 3 (PBP3) and Their Intermolecular Interactions. Pak J Biol Sci 2024; 27:455-468. [PMID: 39415554 DOI: 10.3923/pjbs.2024.455.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
<b>Background and Objective:</b> Despite the rise of antibiotic resistance, penicillin and the broader group of β-lactams have continued to be the most crucial class of antibiotics. Penicillin-Binding Protein 3 (PBP3) in <i>Pseudomonas aeruginosa</i> is the specific molecule that β-lactam-based medicines target. The objective is to design and study several piperacillin derivatives to create novel antibacterial agents. <b>Materials and Methods:</b> Piperacillin derivatives were drawn using chem sketch and prepared using AutoDock 4.2.6 Tools. Molecular docking simulations were conducted on novel piperacillin derivatives and piperacillin (Control) against the 6r3x.PDB protein. The AutoDock log files were analyzed to determine the lowest energy of binding (LEB) values for each ligand. Consequently, the conformer with the most favorable binding energy may be identified. <b>Results:</b> All of the proposed piperacillin derivatives displayed improved binding energies when compared to the reference chemical piperacillin. This suggests the potential for stronger interactions between derivatives and proteins, resulting in an enhanced likelihood of biological effects. Compounds b, e and j, when used alongside piperacillin, showed similar binding sites inside the active site and have the potential for additional characterization. <b>Conclusion:</b> Compounds b, e and j are highly likely to exhibit inhibitory activity, indicating that they should be synthesized and tested for biological activity.
Collapse
|
36
|
Krivitskaya AV, Kuryshkina MS, Eremina MY, Smirnov IV, Khrenova MG. Molecular Basis of Influence of A501X Mutations in Penicillin-Binding Protein 2 of Neisseria gonorrhoeae Strain 35/02 on Ceftriaxone Resistance. Int J Mol Sci 2024; 25:8260. [PMID: 39125830 PMCID: PMC11312080 DOI: 10.3390/ijms25158260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The increase in the resistance of mutant strains of Neisseria gonorrhoeae to the antibiotic ceftriaxone is pronounced in the decrease in the second-order acylation rate constant, k2/KS, by penicillin-binding protein 2 (PBP2). These changes can be caused by both the decrease in the acylation rate constant, k2, and the weakening of the binding affinity, i.e., an increase in the substrate constant, KS. A501X mutations in PBP2 affect second-order acylation rate constants. The PBP2A501V variant exhibits a higher k2/KS value, whereas for PBP2A501R and PBP2A501P variants, these values are lower. We performed molecular dynamic simulations with both classical and QM/MM potentials to model both acylation energy profiles and conformational dynamics of four PBP2 variants to explain the origin of k2/KS changes. The acylation reaction occurs in two elementary steps, specifically, a nucleophilic attack by the oxygen atom of the Ser310 residue and C-N bond cleavage in the β-lactam ring accompanied by the elimination of the leaving group of ceftriaxone. The energy barrier of the first step increases for PBP2 variants with a decrease in the observed k2/KS value. Submicrosecond classic molecular dynamic trajectories with subsequent cluster analysis reveal that the conformation of the β3-β4 loop switches from open to closed and its flexibility decreases for PBP2 variants with a lower k2/KS value. Thus, the experimentally observed decrease in the k2/KS in A501X variants of PBP2 occurs due to both the decrease in the acylation rate constant, k2, and the increase in KS.
Collapse
Affiliation(s)
- Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maria S. Kuryshkina
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maria Y. Eremina
- Biology Department, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Smirnov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria G. Khrenova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, 119071 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.S.K.); (I.V.S.)
| |
Collapse
|
37
|
Abdul-Hammed M, Adedotun IO, Akinboade MW, Adegboyega TA, Salaudeen OM. Antibacterial activities, PASS prediction and ADME analysis of phytochemicals from Curcubita moschata, Curcubita maxima, and Irvingia gabonensis: insights from in silico studies. In Silico Pharmacol 2024; 12:65. [PMID: 39035102 PMCID: PMC11254879 DOI: 10.1007/s40203-024-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Microbial infection management and treatment are crucial as a result of the prevalent antimicrobial resistance issue. Progressive studies are being carried out on how to develop drugs that can mitigate the resistance trends of these microorganisms. Secondary metabolites of plants can also be employed and accessed for this role, as the current study examines the antibacterial activities of phytochemicals from three (3) plants (Cucubita moschata, Cucubita maxima, and Irvingia gabonesis) through computational approaches. Molecular docking studies were carried out to show the binding affinities of the phytochemicals against two target receptors (DNA gyrase and Penicillin Binding Protein 3). In addition, drug likeness analysis, bioactivity and oral-bioavailability properties, absorption, distribution, metabolism, and excretion (ADME) profiling, as well as prediction of activity spectra for substances (PASS) using online tools like SwissADME, PASS online, AdmetSAR2, and Discovery Studio, were also performed. The results obtained identified isochlorogenic acid and apigenin-7-O-glucoside for DNA gyrase (1KZN) and apigenin-7-O-glucoside for Penicillin Binding Protein 3 (4BJP), which were further subjected to molecular dynamics simulation (MDS) and therefore recommended as the lead compounds.
Collapse
Affiliation(s)
- Misbaudeen Abdul-Hammed
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Ibrahim Olaide Adedotun
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
- Insilico Scientific Inventions and Development Limited (ISID), Ibadan, Nigeria
| | - Modinat Wuraola Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| | - Timilehin Adekunle Adegboyega
- Department of Chemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061 USA
| | - Oladele Muheez Salaudeen
- Computational Biophysical Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria
| |
Collapse
|
38
|
Wang X, Li H, Wu C, Yang J, Wang J, Yang T. Metabolism-triggered sensor array aided by machine learning for rapid identification of pathogens. Biosens Bioelectron 2024; 255:116264. [PMID: 38588629 DOI: 10.1016/j.bios.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Chemical-nose strategy has achieved certain success in the discrimination and identification of pathogens. However, this strategy usually relies on non-specific interactions, which are prone to be significantly disturbed by the change of environment thus limiting its practical usefulness. Herein, we present a novel chemical-nose sensing approach leveraging the difference in the dynamic metabolic variation during peptidoglycan metabolism among different species for rapid pathogen discrimination. Pathogens were first tethered with clickable handles through metabolic labeling at two different acidities (pH = 5 and 7) for 20 and 60 min, respectively, followed by click reaction with fluorescence up-conversion nanoparticles to generate a four-dimensional signal output. This discriminative multi-dimensional signal allowed eight types of model bacteria to be successfully classified within the training set into strains, genera, and Gram phenotypes. As the difference in signals of the four sensing channels reflects the difference in the amount/activity of enzymes involved in metabolic labeling, this strategy has good anti-interference capability, which enables precise pathogen identification within 2 h with 100% accuracy in spiked urinary samples and allows classification of unknown species out of the training set into the right phenotype. The robustness of this approach holds significant promise for its widespread application in pathogen identification and surveillance.
Collapse
Affiliation(s)
- Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Huida Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chengxin Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
39
|
Dorrazehi GM, Winkle M, Desmet M, Stroobant V, Tanriver G, Degand H, Evrard D, Desguin B, Morsomme P, Biboy J, Gray J, Mitusińska K, Góra A, Vollmer W, Soumillion P. PBP-A, a cyanobacterial DD-peptidase with high specificity for amidated muropeptides, exhibits pH-dependent promiscuous activity harmful to Escherichia coli. Sci Rep 2024; 14:13999. [PMID: 38890528 PMCID: PMC11189452 DOI: 10.1038/s41598-024-64806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Penicillin binding proteins (PBPs) are involved in biosynthesis, remodeling and recycling of peptidoglycan (PG) in bacteria. PBP-A from Thermosynechococcus elongatus belongs to a cyanobacterial family of enzymes sharing close structural and phylogenetic proximity to class A β-lactamases. With the long-term aim of converting PBP-A into a β-lactamase by directed evolution, we simulated what may happen when an organism like Escherichia coli acquires such a new PBP and observed growth defect associated with the enzyme activity. To further explore the molecular origins of this harmful effect, we decided to characterize deeper the activity of PBP-A both in vitro and in vivo. We found that PBP-A is an enzyme endowed with DD-carboxypeptidase and DD-endopeptidase activities, featuring high specificity towards muropeptides amidated on the D-iso-glutamyl residue. We also show that a low promiscuous activity on non-amidated peptidoglycan deteriorates E. coli's envelope, which is much higher under acidic conditions where substrate discrimination is mitigated. Besides expanding our knowledge of the biochemical activity of PBP-A, this work also highlights that promiscuity may depend on environmental conditions and how it may hinder rather than promote enzyme evolution in nature or in the laboratory.
Collapse
Affiliation(s)
- Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
- Benchmark Animal Health Ltd, 1 Pioneer Building, Edinburgh Technopole, Milton Bridge, Penicuik, EH26 0GB, UK
| | - Martin Desmet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Gamze Tanriver
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Damien Evrard
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Benoît Desguin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Joe Gray
- Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
40
|
Di Gregorio S, Weltman G, Fabbri C, Fernández S, Zárate S, Smayevsky J, Power P, Campos J, Llarrull LI, Mollerach M. Genetic and Phenotypic Changes Related to the Development of mec-Independent Oxacillin Non-Susceptibility in ST8 Staphylococcus aureus Recovered after Antibiotic Therapy in a Patient with Bacteremia. Antibiotics (Basel) 2024; 13:554. [PMID: 38927220 PMCID: PMC11200602 DOI: 10.3390/antibiotics13060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The mec-independent oxacillin non-susceptible S. aureus (MIONSA) strains represent a great clinical challenge, as they are not easily detected and can lead to treatment failure. However, the responsible molecular mechanisms are still very little understood. Here, we studied four clinical ST8-MSSA-t024 isolates recovered during the course of antibiotic treatment from a patient suffering successive episodes of bacteremia. The first isolates (SAMS1, SAMS2, and SAMS3) were susceptible to cefoxitin and oxacillin. The last one (SA2) was susceptible to cefoxitin, resistant to oxacillin, lacked mec genes, and had reduced susceptibility to teicoplanin. SA2 showed higher β-lactamase activity than SAMS1. However, β-lactamase hyperproduction could not be linked to oxacillin resistance as it was not inhibited by clavulanic acid, and no genetic changes that could account for its hyperproduction were found. Importantly, we hereby report the in vivo acquisition and coexistence of different adaptive mutations in genes associated with peptidoglycan synthesis (pbp2, rodA, stp1, yjbH, and yvqF/vraT), which is possibly related with the development of oxacillin resistance and reduced susceptibility to teicoplanin in SA2. Using three-dimensional models and PBP binding assays, we demonstrated the high contribution of the SA2 PBP2 Ala450Asp mutation to the observed oxacillin resistance phenotype. Our results should be considered as a warning for physicians and microbiologists in the region, as MIONSA detection and treatment represent an important clinical challenge.
Collapse
Affiliation(s)
- Sabrina Di Gregorio
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Gabriela Weltman
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Carolina Fabbri
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
| | - Silvina Fernández
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
| | - Soledad Zárate
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Jorgelina Smayevsky
- Laboratorio de Bacteriología, Micología y Parasitología, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires 1431, Argentina
| | - Pablo Power
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires 1282, Argentina
| | - Leticia Irene Llarrull
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, Rosario 2000, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina
| | - Marta Mollerach
- Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autómoma de Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
41
|
Bonardi A, Nocentini A, Giovannuzzi S, Paoletti N, Ammara A, Bua S, Abutaleb NS, Abdelsattar AS, Capasso C, Gratteri P, Flaherty DP, Seleem MN, Supuran CT. Development of Penicillin-Based Carbonic Anhydrase Inhibitors Targeting Multidrug-Resistant Neisseria gonorrhoeae. J Med Chem 2024; 67:9613-9627. [PMID: 38776401 DOI: 10.1021/acs.jmedchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead β-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead β-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 μg/mL).
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Silvia Bua
- Research Institute of the University of Bucharest (ICUB), Bucharest 050663, Romania
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
42
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
43
|
Yang L, Lawhorn S, Bongrand C, Kosmopoulos JC, Kuwabara J, VanNieuwenhze M, Mandel MJ, McFall-Ngai M, Ruby E. Bacterial growth dynamics in a rhythmic symbiosis. Mol Biol Cell 2024; 35:ar79. [PMID: 38598294 PMCID: PMC11238090 DOI: 10.1091/mbc.e24-01-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.
Collapse
Affiliation(s)
- Liu Yang
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Susannah Lawhorn
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Clotilde Bongrand
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jill Kuwabara
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | | | - Mark J. Mandel
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Margaret McFall-Ngai
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Edward Ruby
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
44
|
Bon CG, Grigg JC, Lee J, Robb CS, Caveney NA, Eltis LD, Strynadka NCJ. Structural and kinetic analysis of the monofunctional Staphylococcus aureus PBP1. J Struct Biol 2024; 216:108086. [PMID: 38527711 DOI: 10.1016/j.jsb.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used β-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of β-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of β-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing β-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.
Collapse
Affiliation(s)
- Christopher G Bon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Craig S Robb
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nathanael A Caveney
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
45
|
Kang SJ, Kim DH, Lee BJ. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance. Biophys Chem 2024; 309:107228. [PMID: 38552402 DOI: 10.1016/j.bpc.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
β-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of β-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the β-lactam ring, is the major mechanism for bacterial resistance to β-lactams. In particular, among class A, B, C and D β-lactamases, metallo-β-lactamases (MBLs, class B β-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat β-lactamase-mediated resistance, great efforts have been made to develop β-lactamase inhibitors that restore the activity of β-lactams. Some β-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-β-lactamases (SBLs, class A, C, and D β-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of β-lactamase and mechanisms by which β-lactam antibiotics are inactivated, but also the research finding on β-lactamase inhibitors targeting these enzymes. These detailed information on β-lactamases and their inhibitors could give valuable information for novel β-lactamase inhibitors design.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Mastermeditech Ltd., Seoul 07793, Republic of Korea.
| |
Collapse
|
46
|
Zhang T, Nickerson R, Zhang W, Peng X, Shang Y, Zhou Y, Luo Q, Wen G, Cheng Z. The impacts of animal agriculture on One Health-Bacterial zoonosis, antimicrobial resistance, and beyond. One Health 2024; 18:100748. [PMID: 38774301 PMCID: PMC11107239 DOI: 10.1016/j.onehlt.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
The industrialization of animal agriculture has undoubtedly contributed to the improvement of human well-being by increasing the efficiency of food animal production. At the same time, it has also drastically impacted the natural environment and human society. The One Health initiative emphasizes the interdependency of the health of ecosystems, animals, and humans. In this paper, we discuss some of the most profound consequences of animal agriculture practices from a One Health perspective. More specifically, we focus on impacts to host-microbe interactions by elaborating on how modern animal agriculture affects zoonotic infections, specifically those of bacterial origin, and the concomitant emergence of antimicrobial resistance (AMR). A key question underlying these deeply interconnected issues is how to better prevent, monitor, and manage infections in animal agriculture. To address this, we outline approaches to mitigate the impacts of agricultural bacterial zoonoses and AMR, including the development of novel treatments as well as non-drug approaches comprising integrated surveillance programs and policy and education regarding agricultural practices and antimicrobial stewardship. Finally, we touch upon additional major environmental and health factors impacted by animal agriculture within the One Health context, including animal welfare, food security, food safety, and climate change. Charting how these issues are interwoven to comprise the complex web of animal agriculture's broad impacts on One Health will allow for the development of concerted, multidisciplinary interventions which are truly necessary to tackle these issues from a One Health perspective.
Collapse
Affiliation(s)
- Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Yu Shang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
- Ministry of Agriculture and Rural Affairs Laboratory of Quality and Safe Risk Assessment for Agro-products (Wuhan), Wuhan 430064, Hubei, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
47
|
Choi HJ, Ki DU, Yoon SI. Structural and biochemical analysis of penicillin-binding protein 2 from Campylobacter jejuni. Biochem Biophys Res Commun 2024; 710:149859. [PMID: 38581948 DOI: 10.1016/j.bbrc.2024.149859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to β-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that β-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.
Collapse
Affiliation(s)
- Hong Joon Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong Uk Ki
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
48
|
Shirley JD, Nauta KM, Gillingham JR, Diwakar S, Carlson EE. kinact / KI Value Determination for Penicillin-Binding Proteins in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592586. [PMID: 38746240 PMCID: PMC11092749 DOI: 10.1101/2024.05.05.592586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Penicillin-binding proteins (PBPs) are an essential family of bacterial enzymes that are inhibited by the β-lactam class of antibiotics. PBP inhibition disrupts cell wall biosynthesis, which results in deficient growth and proliferation, and ultimately leads to lysis. IC 50 values are often employed as descriptors of enzyme inhibition and inhibitor selectivity but can be misleading in the study of time-dependent, irreversible inhibitors. Due to this disconnect, the second order rate constant k inact / K I is a more appropriate metric of covalent inhibitor potency. Despite being the gold standard measurement of potency, k inact / K I values are typically obtained from in vitro assays, which limits assay throughput if investigating an enzyme family with multiple homologs (such as the PBPs). Therefore, we developed a whole-cell k inact / K I assay to define inhibitor potency for the PBPs in Streptococcus pneumoniae using the fluorescent activity-based probe Bocillin-FL. Our results align with in vitro k inact / K I data and show a comparable relationship to previously established IC 50 values. These results support the validity of our in vivo k inact / K I method as a means of obtaining a full picture of β-lactam potency for a suite of PBPs. Abstract Figure
Collapse
|
49
|
Jiang W, Lin T, Pan J, Rivera CE, Tincher C, Wang Y, Zhang Y, Gao X, Wang Y, Tsui HCT, Winkler ME, Lynch M, Long H. Spontaneous mutations and mutational responses to penicillin treatment in the bacterial pathogen Streptococcus pneumoniae D39. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:198-211. [PMID: 38827133 PMCID: PMC11136922 DOI: 10.1007/s42995-024-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/04/2024] [Indexed: 06/04/2024]
Abstract
Bacteria with functional DNA repair systems are expected to have low mutation rates due to strong natural selection for genomic stability. However, our study of the wild-type Streptococcus pneumoniae D39, a pathogen responsible for many common diseases, revealed a high spontaneous mutation rate of 0.02 per genome per cell division in mutation-accumulation (MA) lines. This rate is orders of magnitude higher than that of other non-mutator bacteria and is characterized by a high mutation bias in the A/T direction. The high mutation rate may have resulted from a reduction in the overall efficiency of selection, conferred by the tiny effective population size in nature. In line with this, S. pneumoniae D39 also exhibited the lowest DNA mismatch-repair (MMR) efficiency among bacteria. Treatment with the antibiotic penicillin did not elevate the mutation rate, as penicillin did not induce DNA damage and S. pneumoniae lacks a stress response pathway. Our findings suggested that the MA results are applicable to within-host scenarios and provide insights into pathogen evolution. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00220-6.
Collapse
Affiliation(s)
- Wanyue Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ho-Ching T. Tsui
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
50
|
Hsu TW, Fang JM. Advances and prospects of analytic methods for bacterial transglycosylation and inhibitor discovery. Analyst 2024; 149:2204-2222. [PMID: 38517346 DOI: 10.1039/d3an01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.
Collapse
Affiliation(s)
- Tse-Wei Hsu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|