1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Clifton BE, Alcolombri U, Uechi GI, Jackson CJ, Laurino P. The ultra-high affinity transport proteins of ubiquitous marine bacteria. Nature 2024; 634:721-728. [PMID: 39261732 PMCID: PMC11485210 DOI: 10.1038/s41586-024-07924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
SAR11 bacteria are the most abundant microorganisms in the surface ocean1 and have global biogeochemical importance2-4. To thrive in their competitive oligotrophic environment, these bacteria rely heavily on solute-binding proteins that facilitate uptake of specific substrates via membrane transporters5,6. The functions and properties of these transport proteins are key factors in the assimilation of dissolved organic matter and biogeochemical cycling of nutrients in the ocean, but they have remained largely inaccessible to experimental investigation. Here we performed genome-wide experimental characterization of all solute-binding proteins in a prototypical SAR11 bacterium, revealing specific functions and general trends in their properties that contribute to the success of SAR11 bacteria in oligotrophic environments. We found that the solute-binding proteins of SAR11 bacteria have extremely high binding affinity (dissociation constant >20 pM) and high binding specificity, revealing molecular mechanisms of oligotrophic adaptation. Our functional data have uncovered new carbon sources for SAR11 bacteria and enable accurate biogeographical analysis of SAR11 substrate uptake capabilities throughout the ocean. This study provides a comprehensive view of the substrate uptake capabilities of ubiquitous marine bacteria, providing a necessary foundation for understanding their contribution to assimilation of dissolved organic matter in marine ecosystems.
Collapse
Affiliation(s)
- Ben E Clifton
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gen-Ichiro Uechi
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
3
|
King-Hudson TRJ, Davies JS, Quan S, Currie MJ, Tillett ZD, Copping J, Panjikar S, Friemann R, Allison JR, North RA, Dobson RCJ. On the function of TRAP substrate-binding proteins: Conformational variation of the sialic acid binding protein SiaP. J Biol Chem 2024; 300:107851. [PMID: 39357825 DOI: 10.1016/j.jbc.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilizes a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 μM) compared to N-glycolylneuraminate (KD = 4.4 μM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in a crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilizing the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.
Collapse
Affiliation(s)
- Te-Rina J King-Hudson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Computational and Structural Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | - Senwei Quan
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Zachary D Tillett
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jack Copping
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia; Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rachel A North
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Kim M, Kim W, Park Y, Jung J, Park W. Lineage-specific evolution of Aquibium, a close relative of Mesorhizobium, during habitat adaptation. Appl Environ Microbiol 2024; 90:e0209123. [PMID: 38412007 PMCID: PMC10952388 DOI: 10.1128/aem.02091-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
The novel genus Aquibium that lacks nitrogenase was recently reclassified from the Mesorhizobium genus. The genomes of Aquibium species isolated from water were smaller and had higher GC contents than those of Mesorhizobium species. Six Mesorhizobium species lacking nitrogenase were found to exhibit low similarity in the average nucleotide identity values to the other 24 Mesorhizobium species. Therefore, they were classified as the non-N2-fixing Mesorhizobium lineage (N-ML), an evolutionary intermediate species. The results of our phylogenomic analyses and the loss of Rhizobiales-specific fur/mur indicated that Mesorhizobium species may have evolved from Aquibium species through an ecological transition. Halotolerant and alkali-resistant Aquibium and Mesorhizobium microcysteis belonging to N-ML possessed many tripartite ATP-independent periplasmic transporter and sodium/proton antiporter subunits composed of seven genes (mrpABCDEFG). These genes were not present in the N2-fixing Mesorhizobium lineage (ML), suggesting that genes acquired for adaptation to highly saline and alkaline environments were lost during the evolution of ML as the habitat changed to soil. Land-to-water habitat changes in Aquibium species, close relatives of Mesorhizobium species, could have influenced their genomic evolution by the gain and loss of genes. Our study indicated that lineage-specific evolution could have played a significant role in shaping their genome architecture and conferring their ability to thrive in different habitats.IMPORTANCEPhylogenetic analyses revealed that the Aquibium lineage (AL) and non-N2-fixing Mesorhizobium lineage (N-ML) were monophyletically grouped into distinct clusters separate from the N2-fixing Mesorhizobium lineage (ML). The N-ML, an evolutionary intermediate species having characteristics of both ancestral and descendant species, could provide a genomic snapshot of the genetic changes that occur during adaptation. Genomic analyses of AL, N-ML, and ML revealed that changes in the levels of genes related to transporters, chemotaxis, and nitrogen fixation likely reflect adaptations to different environmental conditions. Our study sheds light on the complex and dynamic nature of the evolution of rhizobia in response to changes in their environment and highlights the crucial role of genomic analysis in understanding these processes.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
6
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: a Python package for FRET efficiency predictions using rotamer libraries. Commun Biol 2024; 7:298. [PMID: 38461354 PMCID: PMC10925062 DOI: 10.1038/s42003-024-05910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024] Open
Abstract
Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural characterization of biomolecules. Here, we introduce FRETpredict, an easy-to-use Python software to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer library approach to describe the FRET probes covalently bound to the protein. The software efficiently and flexibly operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We provide access to rotamer libraries for many commonly used dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET probes. We demonstrate the performance and accuracy of the software for different types of systems: a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict .
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Chemical, Life and Environmental Sustainability Sciences, University of Parma, Parma, 43125, Italy
- Istituto Nanoscienze - CNR-NANO, Center S3, via G. Campi 213/A, 41125, Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - João M Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Micha B A Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
7
|
Currie MJ, Davies JS, Scalise M, Gulati A, Wright JD, Newton-Vesty MC, Abeysekera GS, Subramanian R, Wahlgren WY, Friemann R, Allison JR, Mace PD, Griffin MDW, Demeler B, Wakatsuki S, Drew D, Indiveri C, Dobson RCJ, North RA. Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter. eLife 2024; 12:RP92307. [PMID: 38349818 PMCID: PMC10942642 DOI: 10.7554/elife.92307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
Collapse
Affiliation(s)
- Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Ramaswamy Subramanian
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University West LafayetteWest LafayetteUnited States
| | - Weixiao Y Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of GothenburgGothenburgSweden
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of AucklandAucklandNew Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Michael DW Griffin
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of MontanaMissoulaUnited States
- Department of Chemistry and Biochemistry, University of LethbridgeLethbridgeCanada
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator LaboratoryMenlo ParkUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Renwick CJ Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
8
|
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, Fuchs BM. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre. THE ISME JOURNAL 2024; 18:wrae155. [PMID: 39096506 PMCID: PMC11366302 DOI: 10.1093/ismejo/wrae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 08/02/2024] [Indexed: 08/05/2024]
Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters.
Collapse
Affiliation(s)
- Monike Oggerin
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Jan Brüwer
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Daniela Voß
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
| | - Marina García-Llorca
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Oliver Zielinski
- Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, Wilhelmshafen, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| | - Bernhard M Fuchs
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
| |
Collapse
|
9
|
Peter MF, Ruland JA, Kim Y, Hendricks P, Schneberger N, Siebrasse JP, Thomas GH, Kubitscheck U, Hagelueken G. Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP. Nat Commun 2024; 15:217. [PMID: 38191530 PMCID: PMC10774421 DOI: 10.1038/s41467-023-44327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters use an extra cytoplasmic substrate binding protein (SBP) to transport a wide variety of substrates in bacteria and archaea. The SBP can adopt an open- or closed state depending on the presence of substrate. The two transmembrane domains of TRAP transporters form a monomeric elevator whose function is strictly dependent on the presence of a sodium ion gradient. Insights from experimental structures, structural predictions and molecular modeling have suggested a conformational coupling between the membrane elevator and the substrate binding protein. Here, we use a disulfide engineering approach to lock the TRAP transporter HiSiaPQM from Haemophilus influenzae in different conformational states. The SBP, HiSiaP, is locked in its substrate-bound form and the transmembrane elevator, HiSiaQM, is locked in either its assumed inward- or outward-facing states. We characterize the disulfide-locked constructs and use single-molecule total internal reflection fluorescence (TIRF) microscopy to study their interactions. Our experiments demonstrate that the SBP and the transmembrane elevator are indeed conformationally coupled, meaning that the open and closed state of the SBP recognize specific conformational states of the transporter and vice versa.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Jan A Ruland
- Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Yeojin Kim
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philipp Hendricks
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jan Peter Siebrasse
- Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Ulrich Kubitscheck
- Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Ye Z, Wei Y, Jiang L, Zhang Y. Oxygenolytic sulfoquinovose degradation by an iron-dependent alkanesulfonate dioxygenase. iScience 2023; 26:107803. [PMID: 37731605 PMCID: PMC10507154 DOI: 10.1016/j.isci.2023.107803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfoquinovose (6-deoxy-6-sulfo-D-glucose, SQ), the polar head group of sulfolipids in plants, is abundant in nature. Many bacteria degrade SQ through pathways termed sulfoglycolysis producing C3 or C2 sulfonates, while certain bacteria degrade SQ through direct oxygenolytic cleavage of the SQ C-S bond, catalyzed by a flavin-dependent alkanesulfonate monooxygenase (sulfo-ASMO pathway). Here we report bioinformatics and biochemical studies revealing an alternative mechanism for oxygenolytic cleavage of the SQ C-S bond, catalyzed by an iron and α-ketoglutarate-dependent alkanesulfonate dioxygenase (SqoD, sulfo-ASDO pathway). In both the ASMO and ASDO pathways, the product 6-dehydroglucose is reduced to glucose by NAD(P)H-dependent SquF. Marinomonas ushuaiensis, a marine bacterium, which harbors the sulfo-ASDO gene cluster is shown utilizing SQ as a carbon source for growth, accompanied by increased transcription of SqoD. The sulfo-ASDO pathway highlights the range of microbial strategies for degradation of this ubiquitous sulfo-sugar, with potential implications for sulfur recycling in different biological environments.
Collapse
Affiliation(s)
- Zonghua Ye
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemistry, Tianjin University, Tianjin 300072, P.R.China
| |
Collapse
|
11
|
Zhang Z, Liu Y, Zhao W, Ji M. Radiation impacts gene redundancy and biofilm regulation of cryoconite microbiomes in Northern Hemisphere glaciers. MICROBIOME 2023; 11:228. [PMID: 37848997 PMCID: PMC10583317 DOI: 10.1186/s40168-023-01621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Glaciers harbor diverse microorganisms adapted to extreme conditions with high radiation, fluctuating temperature, and low nutrient availability. In glacial ecosystems, cryoconite granules are hotspots of microbial metabolic activity and could influences the biogeochemical cycle on glacier surface. Climate change could influence glacier dynamics by changing regional meteorological factors (e.g., radiation, precipitation, temperature, wind, and evaporation). Moreover, meteorological factors not only influence glacier dynamics but also directly or indirectly influence cryoconite microbiomes. However, the relationship of the meteorological factors and cryoconite microbiome are poorly understood. RESULTS Here, we collected 88 metagenomes from 26 glaciers distributed in the Northern Hemisphere with corresponding public meteorological data to reveal the relationship between meteorological factors and variation of cryoconite microbiome. Our results showed significant differences in taxonomic and genomic characteristics between cryoconite generalists and specialists. Additionally, we found that the biogeography of both generalists and specialists was influenced by solar radiation. Specialists with smaller genome size and lower gene redundancy were more abundant under high radiation stress, implying that streamlined genomes are more adapted to high radiation conditions. Network analysis revealed that biofilm regulation is a ubiquitous function in response to radiation stress, and hub genes were associated with the formation and dispersion of biofilms. CONCLUSION These findings enhance our understanding of glacier cryoconite microbiome variation on a hemispheric scale and indicate the response mechanisms to radiation stress, which will support forecasts of the ecological consequences of future climate change. Video Abstract.
Collapse
Affiliation(s)
- Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mukan Ji
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
12
|
Xing Q, Mesbah NM, Wang H, Zhang Y, Li J, Zhao B. Tandem mass tag-based quantitative proteomics reveals osmotic adaptation mechanisms in Alkalicoccus halolimnae BZ-SZ-XJ29 T , a halophilic bacterium with a broad salinity range for optimal growth. Environ Microbiol 2023; 25:1967-1987. [PMID: 37271582 DOI: 10.1111/1462-2920.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
The moderate halophilic bacterium Alkalicoccus halolimnae BZ-SZ-XJ29T exhibits optimum growth over a wide range of NaCl concentrations (8.3-12.3%, w/v; 1.42-2.1 mol L-1 ). However, its adaptive mechanisms to cope with high salt-induced osmotic stress remain unclear. Using TMT-based quantitative proteomics, the cellular proteome was assessed under low (4% NaCl, 0.68 mol L-1 NaCl, control (CK) group), moderate (8% NaCl, 1.37 mol L-1 NaCl), high (12% NaCl, 2.05 mol L-1 NaCl), and extremely high (16% NaCl, 2.74 mol L-1 NaCl) salinity conditions. Digital droplet PCR confirmed the transcription of candidate genes related to salinity. A. halolimnae utilized distinct adaptation strategies to cope with different salinity conditions. Mechanisms such as accumulating different amounts and types of compatible solutes (i.e., ectoine, glycine betaine, glutamate, and glutamine) and the uptake of glycine betaine and glutamate were employed to cope with osmotic stress. Ectoine synthesis and accumulation were critical to the salt adaptation of A. halolimnae. The expression of EctA, EctB, and EctC, as well as the intracellular accumulation of ectoine, significantly and consistently increased with increasing salinity. Glycine betaine and glutamate concentrations remained constant under the four NaCl concentrations. The total content of glutamine and glutamate maintained a dynamic balance and, when exposed to different salinities, may play a role in low salinity-induced osmoadaptation. Moreover, cellular metabolism was severely affected at high salt concentrations, but the synthesis of amino acids, carbohydrate metabolism, and membrane transport related to haloadptation was preserved to maintain cytoplasmic concentration at high salinity. These findings provide insights into the osmoadaptation mechanisms of moderate halophiles and can serve as a theoretical underpinning for industrial production and application of compatible solutes.
Collapse
Affiliation(s)
- Qinghua Xing
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Noha M Mesbah
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Haisheng Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingjie Zhang
- China Patent Technology Development Co, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
14
|
Roden A, Engelin MK, Pos KM, Geertsma ER. Membrane-anchored substrate binding proteins are deployed in secondary TAXI transporters. Biol Chem 2023:hsz-2022-0337. [PMID: 36916166 DOI: 10.1515/hsz-2022-0337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
Substrate-binding proteins (SBPs) are part of solute transport systems and serve to increase substrate affinity and uptake rates. In contrast to primary transport systems, the mechanism of SBP-dependent secondary transport is not well understood. Functional studies have thus far focused on Na+-coupled Tripartite ATP-independent periplasmic (TRAP) transporters for sialic acid. Herein, we report the in vitro functional characterization of TAXIPm-PQM from the human pathogen Proteus mirabilis. TAXIPm-PQM belongs to a TRAP-subfamily using a different type of SBP, designated TRAP-associated extracytoplasmic immunogenic (TAXI) protein. TAXIPm-PQM catalyzes proton-dependent α-ketoglutarate symport and its SBP is an essential component of the transport mechanism. Importantly, TAXIPm-PQM represents the first functionally characterized SBP-dependent secondary transporter that does not rely on a soluble SBP, but uses a membrane-anchored SBP instead.
Collapse
Affiliation(s)
- Anja Roden
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Melanie K Engelin
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| |
Collapse
|
15
|
Wang S, Jiang L, Cui L, Alain K, Xie S, Shao Z. Transcriptome Analysis of Cyclooctasulfur Oxidation and Reduction by the Neutrophilic Chemolithoautotrophic Sulfurovum indicum from Deep-Sea Hydrothermal Ecosystems. Antioxidants (Basel) 2023; 12:antiox12030627. [PMID: 36978876 PMCID: PMC10045233 DOI: 10.3390/antiox12030627] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chemolithoautotrophic Campylobacterota are widespread and predominant in worldwide hydrothermal vents, and they are key players in the turnover of zero-valence sulfur. However, at present, the mechanism of cyclooctasulfur activation and catabolism in Campylobacterota bacteria is not clearly understood. Here, we investigated these processes in a hydrothermal vent isolate named Sulfurovum indicum ST-419. A transcriptome analysis revealed that multiple genes related to biofilm formation were highly expressed during both sulfur oxidation and reduction. Additionally, biofilms containing cells and EPS coated on sulfur particles were observed by SEM, suggesting that biofilm formation may be involved in S0 activation in Sulfurovum species. Meanwhile, several genes encoding the outer membrane proteins of OprD family were also highly expressed, and among them, gene IMZ28_RS00565 exhibited significantly high expressions by 2.53- and 7.63-fold changes under both conditions, respectively, which may play a role in sulfur uptake. However, other mechanisms could be involved in sulfur activation and uptake, as experiments with dialysis bags showed that direct contact between cells and sulfur particles was not mandatory for sulfur reduction activity, whereas cell growth via sulfur oxidation did require direct contact. This indirect reaction could be ascribed to the role of H2S and/or other thiol-containing compounds, such as cysteine and GSH, which could be produced in the culture medium during sulfur reduction. In the periplasm, the sulfur-oxidation-multienzyme complexes soxABXY1Z1 and soxCDY2Z2 are likely responsible for thiosulfate oxidation and S0 oxidation, respectively. In addition, among the four psr gene clusters encoding polysulfide reductases, only psrA3B3C3 was significantly upregulated under the sulfur reduction condition, implying its essential role in sulfur reduction. These results expand our understanding of the interactions of Campylobacterota with the zero-valence sulfur and their adaptability to deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Shasha Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Correspondence: (L.J.); (Z.S.)
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, China
| | - Karine Alain
- CNRS, Université Brest, Ifremer, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, UMR 6197, IRP 1211 MicrobSea, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France
| | - Shaobin Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
- Sino-French Laboratory of Deep-Sea Microbiology (MicrobSea), Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: (L.J.); (Z.S.)
| |
Collapse
|
16
|
Davies JS, Currie MJ, North RA, Scalise M, Wright JD, Copping JM, Remus DM, Gulati A, Morado DR, Jamieson SA, Newton-Vesty MC, Abeysekera GS, Ramaswamy S, Friemann R, Wakatsuki S, Allison JR, Indiveri C, Drew D, Mace PD, Dobson RCJ. Structure and mechanism of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2023; 14:1120. [PMID: 36849793 PMCID: PMC9971032 DOI: 10.1038/s41467-023-36590-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand.,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Rachel A North
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Jack M Copping
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dustin R Morado
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand
| | - Subramanian Ramaswamy
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University, 1203 W State St, West Lafayette, IN 47906, USA
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, S-40530, Gothenburg, Sweden
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036, Arcavacata di Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
17
|
Montepietra D, Tesei G, Martins JM, Kunze MBA, Best RB, Lindorff-Larsen K. FRETpredict: A Python package for FRET efficiency predictions using rotamer libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525885. [PMID: 36789411 PMCID: PMC9928041 DOI: 10.1101/2023.01.27.525885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here, we introduce FRETpredict, a Python software program to predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses an established Rotamer Library Approach to describe the FRET probes covalently bound to the protein. The software efficiently operates on large conformational ensembles such as those generated by molecular dynamics simulations to facilitate the validation or refinement of molecular models and the interpretation of experimental data. We demonstrate the performance and accuracy of the software for different types of systems: a relatively structured peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins (HiSiaP, SBD2, and MalE). We also describe a general approach to generate new rotamer libraries for FRET probes of interest. FRETpredict is open source (GPLv3) and is available at github.com/KULL-Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A 41125 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - João M. Martins
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Micha B. A. Kunze
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Willemin MS, Hamelin R, Armand F, Holliger C, Maillard J. Proteome adaptations of the organohalide-respiring Desulfitobacterium hafniense strain DCB-2 to various energy metabolisms. Front Microbiol 2023; 14:1058127. [PMID: 36733918 PMCID: PMC9888536 DOI: 10.3389/fmicb.2023.1058127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction Desulfitobacterium hafniense was isolated for its ability to use organohalogens as terminal electron acceptors via organohalide respiration (OHR). In contrast to obligate OHR bacteria, Desulfitobacterium spp. show a highly versatile energy metabolism with the capacity to use different electron donors and acceptors and to grow fermentatively. Desulfitobacterium genomes display numerous and apparently redundant members of redox enzyme families which confirm their metabolic potential. Nonetheless, the enzymes responsible for many metabolic traits are not yet identified. Methods In the present work, we conducted an extended proteomic study by comparing the proteomes of Desulfitobacterium hafniense strain DCB-2 cultivated in combinations of electron donors and acceptors, triggering five alternative respiratory metabolisms that include OHR, as well as fermentation. Tandem Mass Tag labelling proteomics allowed us to identify and quantify almost 60% of the predicted proteome of strain DCB-2 (2,796 proteins) in all six growth conditions. Raw data are available via ProteomeXchange with identifier PXD030393. Results and discussion This dataset was analyzed in order to highlight the proteins that were significantly up-regulated in one or a subset of growth conditions and to identify possible key players in the different energy metabolisms. The addition of sodium sulfide as reducing agent in the medium - a very widespread practice in the cultivation of strictly anaerobic bacteria - triggered the expression of the dissimilatory sulfite reduction pathway in relatively less favorable conditions such as fermentative growth on pyruvate, respiration with H2 as electron donor and OHR conditions. The presence of H2, CO2 and acetate in the medium induced several metabolic pathways involved in carbon metabolism including the Wood-Ljungdahl pathway and two pathways related to the fermentation of butyrate that rely on electron-bifurcating enzymes. While the predicted fumarate reductase appears to be constitutively expressed, a new lactate dehydrogenase and lactate transporters were identified. Finally, the OHR metabolism with 3-chloro-4-hydroxyphenylacetate as electron acceptor strongly induced proteins encoded in several reductive dehalogenase gene clusters, as well as four new proteins related to corrinoid metabolism. We believe that this extended proteomic database represents a new landmark in understanding the metabolic versatility of Desulfitobacterium spp. and provides a solid basis for addressing future research questions.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,*Correspondence: Julien Maillard, ✉
| |
Collapse
|
19
|
Felice AG, Santos LNQ, Kolossowski I, Zen FL, Alves LG, Rodrigues TCV, Prado LCS, Jaiswal AK, Tiwari S, Miranda FM, Ramos RTJ, Azevedo V, Oliveira CJF, Benevides LJ, Soares SC. Comparative genomics of Bordetella pertussis and prediction of new vaccines and drug targets. J Biomol Struct Dyn 2022; 40:10136-10152. [PMID: 34155952 DOI: 10.1080/07391102.2021.1940279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Andrei G Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leonardo N Q Santos
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ian Kolossowski
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Felipe L Zen
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro G Alves
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís C V Rodrigues
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ligia C S Prado
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun K Jaiswal
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fábio M Miranda
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rommel T J Ramos
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.,Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlo J F Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Leandro J Benevides
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Siomar C Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
20
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
21
|
Peter MF, Ruland JA, Depping P, Schneberger N, Severi E, Moecking J, Gatterdam K, Tindall S, Durand A, Heinz V, Siebrasse JP, Koenig PA, Geyer M, Ziegler C, Kubitscheck U, Thomas GH, Hagelueken G. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2022; 13:4471. [PMID: 35927235 PMCID: PMC9352664 DOI: 10.1038/s41467-022-31907-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jan A Ruland
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Peer Depping
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Aston Centre for Membrane Proteins and Lipids Research, Aston St., B4 7ET, Birmingham, UK
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emmanuele Severi
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
- Biosciences Institute, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sarah Tindall
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Alexandre Durand
- Institut de Génétique et de Biologie Molecule et Cellulaire, 1 Rue Laurent Fries, 67404, Illkirch Cedex, France
| | - Veronika Heinz
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jan Peter Siebrasse
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Paul-Albert Koenig
- Core Facility Nanobodies, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ulrich Kubitscheck
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
22
|
Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, Narducci A, Thomas GH, Cordes T, Hagelueken G. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nat Commun 2022; 13:4396. [PMID: 35906222 PMCID: PMC9338047 DOI: 10.1038/s41467-022-31945-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | | |
Collapse
|
23
|
Xu S, Wang X, Zhang F, Jiang Y, Zhang Y, Cheng M, Yan X, Hong Q, He J, Qiu J. PicR as a MarR Family Transcriptional Repressor Multiply Controls the Transcription of Picolinic Acid Degradation Gene Cluster pic in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2022; 88:e0017222. [PMID: 35604228 PMCID: PMC9195942 DOI: 10.1128/aem.00172-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo β-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.
Collapse
Affiliation(s)
- Siqiong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiao Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fuyin Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
25
|
Zhang Y, Tan H, Yang S, Huang Y, Cai S, Jian J, Cai J, Qin Q. The role of dctP gene in regulating colonization, adhesion and pathogenicity of Vibrio alginolyticus strain HY9901. JOURNAL OF FISH DISEASES 2022; 45:421-434. [PMID: 34931326 DOI: 10.1111/jfd.13571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Vibriosis caused by Vibrio alginolyticus has severely affected the development of mariculture industry in recent decades. DctP, a tripartite ATP-independent periplasmic transporter solute-binding subunit, is thought to be one of the virulence factors in Vibrio. In this study, the results displayed no difference in morphological characteristics and growth between ΔdctP (dctP mutant strain) and WT (wild-type strain). Nevertheless, the ability of swarming motility, biofilm formation, ECPase formation, cell adhesion and colonized ability of ΔdctP significantly decreased compared to those of WT. The LD50 of ΔdctP significantly increased by 40-fold compared to that of WT. The transcriptome analysis demonstrated the deletion mutation of dctP could regulate the expression levels of 22 genes related to colonization, adhesion and pathogenicity in V. alginolyticus. The analysis of qRT-PCR showed the transcriptome data were reliable. These results reveal the effect of attenuated function of DctP on colonization, adherence and pathogenicity by controlling the expression of related gene.
Collapse
Affiliation(s)
- Yilin Zhang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Huimin Tan
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Shiping Yang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
| | - Shuanghu Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College of Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Joosten RP, Nicholls RA, Agirre J. Towards Consistency in Geometry Restraints for Carbohydrates in the Pyranose form: Modern Dictionary Generators Reviewed. Curr Med Chem 2022; 29:1193-1207. [PMID: 34477506 PMCID: PMC7612510 DOI: 10.2174/0929867328666210902140754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/23/2022]
Abstract
Macromolecular restrained refinement is nowadays the most used method for improving the agreement between an atomic structural model and experimental data. Restraint dictionaries, a key tool behind the success of the method, allow fine-tuning geometric properties such as distances and angles between atoms beyond simplistic expectations. Dictionary generators can provide restraint target estimates derived from different sources, from fully theoretical to experimental and any combination in between. Carbohydrates are stereochemically complex biomolecules and, in their pyranose form, have clear conformational preferences. As such, they pose unique problems to dictionary generators and in the course of this study, require special attention from software developers. Functional differences between restraint generators will be discussed, as well as the process of achieving consistent results with different software designs. The study will conclude a set of practical considerations, as well as recommendations for the generation of new restraint dictionaries, using the improved software alternatives discussed.
Collapse
Affiliation(s)
| | | | - Jon Agirre
- Address correspondence to this author at the York Structural Biology Laboratory, Department of Chemistry, University of York, YO10 5DD, England; Tel: +44 (0) 1904 32 8252;, E-mail:
| |
Collapse
|
27
|
Kang JY, Lee B, Kim JA, Kim MS, Kim CH. Identification and characterization of an ectoine biosynthesis gene cluster from Aestuariispira ectoiniformans sp. nov., isolated from seawater. Microbiol Res 2021; 254:126898. [PMID: 34710834 DOI: 10.1016/j.micres.2021.126898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
An ectoine-producing bacterium, designated SWCN16T, was isolated from seawater and could be grown in a medium containing up to 12 % NaCl. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SWCN16T belonged to the genus Aestuariispira, class Alphaproteobacteria, and shared the highest 16S rRNA gene sequence similarity of 96.8% with Aestuariispira insulae CECT 8488T. The phenotypic, chemotaxonomic, and genotypic characteristics findings of this study suggested that strain SWCN16T represented a novel species of the genus Aestuariispira. We propose the name Aestuariispira ectoiniformans sp. nov. for this species. Whole-genome sequencing analysis of the isolate revealed a putative ectABC gene cluster for ectoine biosynthesis. These genes were found to be functional using ectoine synthesis testing and S16-ectBAC cells, which were pET21a-ectBAC-transformed E. coli BL21 cells. We found that S16-ectBAC synthesized about 1.67 g/L extracellular ectoine and about 0.59 g/L intracellular ectoine via bioconversion at optimum conditions.
Collapse
Affiliation(s)
- Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Binna Lee
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Jeong Ah Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Min-Soo Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Chul Ho Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| |
Collapse
|
28
|
Hagström Å, Zweifel UL, Sundh J, Osbeck CMG, Bunse C, Sjöstedt J, Müller-Karulis B, Pinhassi J. Composition and Seasonality of Membrane Transporters in Marine Picoplankton. Front Microbiol 2021; 12:714732. [PMID: 34650527 PMCID: PMC8507841 DOI: 10.3389/fmicb.2021.714732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3μm–0.2μm size fraction comprising prokaryotes and some picoeukaryotes. The presence of specific transporter traits was shown to be guiding the succession of these microorganisms. A limited number of taxa were associated with the dominant transporter proteins that were identified for the nine key substrate categories for microbial growth. Throughout the year, the microbial taxa at the level of order showed highly similar patterns in terms of transporter traits. The distribution of transporters stayed the same, irrespective of the abundance of each taxon. This would suggest that the distribution pattern of transporters depends on the bacterial groups being dominant at a given time of the year. Also, we find notable numbers of secretion proteins that may allow marine bacteria to infect and kill prey organisms thus releasing nutrients. Finally, we demonstrate that transporter proteins may provide clues to the relative importance of biogeochemical processes, and we suggest that virtual transporter functionalities may become important components in future population dynamics models.
Collapse
Affiliation(s)
- Åke Hagström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Ulla Li Zweifel
- Swedish Institute for the Marine Environment, Gothenburg University, Gothenburg, Sweden
| | - John Sundh
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Christofer M G Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden.,Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| | | | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
29
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Bisson C, Salmon RC, West L, Rafferty JB, Hitchcock A, Thomas GH, Kelly DJ. The structural basis for high-affinity uptake of lignin-derived aromatic compounds by proteobacterial TRAP transporters. FEBS J 2021; 289:436-456. [PMID: 34375507 DOI: 10.1111/febs.16156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The organic polymer lignin is a component of plant cell walls, which like (hemi)-cellulose is highly abundant in nature and relatively resistant to degradation. However, extracellular enzymes released by natural microbial consortia can cleave the β-aryl ether linkages in lignin, releasing monoaromatic phenylpropanoids that can be further catabolised by diverse species of bacteria. Biodegradation of lignin is therefore important in global carbon cycling, and its natural abundance also makes it an attractive biotechnological feedstock for the industrial production of commodity chemicals. Whilst the pathways for degradation of lignin-derived aromatics have been extensively characterised, much less is understood about how they are recognised and taken up from the environment. The purple phototrophic bacterium Rhodopseudomonas palustris can grow on a range of phenylpropanoid monomers and is a model organism for studying their uptake and breakdown. R. palustris encodes a tripartite ATP-independent periplasmic (TRAP) transporter (TarPQM) linked to genes encoding phenylpropanoid-degrading enzymes. The periplasmic solute-binding protein component of this transporter, TarP, has previously been shown to bind aromatic substrates. Here, we determine the high-resolution crystal structure of TarP from R. palustris as well as the structures of homologous proteins from the salt marsh bacterium Sagittula stellata and the halophile Chromohalobacter salexigens, which also grow on lignin-derived aromatics. In combination with tryptophan fluorescence ligand-binding assays, our ligand-bound co-crystal structures reveal the molecular basis for high-affinity recognition of phenylpropanoids by these TRAP transporters, which have potential for improving uptake of these compounds for biotechnological transformations of lignin.
Collapse
Affiliation(s)
- Claudine Bisson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Robert C Salmon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Laura West
- Department of Biology, University of York, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | | | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| |
Collapse
|
31
|
Kirst H, Kerfeld CA. Clues to the function of bacterial microcompartments from ancillary genes. Biochem Soc Trans 2021; 49:1085-1098. [PMID: 34196367 PMCID: PMC8517908 DOI: 10.1042/bst20200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles. Their bounding membrane is a selectively permeable protein shell, encapsulating enzymes of specialized metabolic pathways. While the function of a BMC is dictated by the encapsulated enzymes which vary with the type of the BMC, the shell is formed by conserved protein building blocks. The genes necessary to form a BMC are typically organized in a locus; they encode the shell proteins, encapsulated enzymes as well as ancillary proteins that integrate the BMC function into the cell's metabolism. Among these are transcriptional regulators which usually found at the beginning or end of a locus, and transmembrane proteins that presumably function to conduct the BMC substrate into the cell. Here, we describe the types of transcriptional regulators and permeases found in association with BMC loci, using a recently collected data set of more than 7000 BMC loci distributed over 45 bacterial phyla, including newly discovered BMC loci. We summarize the known BMC regulation mechanisms, and highlight how much remains to be uncovered. We also show how analysis of these ancillary proteins can inform hypotheses about BMC function; by examining the ligand-binding domain of the regulator and the transporter, we propose that nucleotides are the likely substrate for an enigmatic uncharacterized BMC of unknown function.
Collapse
Affiliation(s)
- Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, U.S.A
| |
Collapse
|
32
|
Davies JS, Currie MJ, Wright JD, Newton-Vesty MC, North RA, Mace PD, Allison JR, Dobson RCJ. Selective Nutrient Transport in Bacteria: Multicomponent Transporter Systems Reign Supreme. Front Mol Biosci 2021; 8:699222. [PMID: 34268334 PMCID: PMC8276074 DOI: 10.3389/fmolb.2021.699222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
34
|
Chen YH, Yang SH, Tandon K, Lu CY, Chen HJ, Shih CJ, Tang SL. Potential syntrophic relationship between coral-associated Prosthecochloris and its companion sulfate-reducing bacterium unveiled by genomic analysis. Microb Genom 2021; 7:000574. [PMID: 33952388 PMCID: PMC8209720 DOI: 10.1099/mgen.0.000574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Endolithic microbial symbionts in the coral skeleton may play a pivotal role in maintaining coral health. However, compared to aerobic micro-organisms, research on the roles of endolithic anaerobic micro-organisms and microbe-microbe interactions in the coral skeleton are still in their infancy. In our previous study, we showed that a group of coral-associated Prosthecochloris (CAP), a genus of anaerobic green sulphur bacteria, was dominant in the skeleton of the coral Isopora palifera. Though CAP is diverse, the 16S rRNA phylogeny presents it as a distinct clade separate from other free-living Prosthecochloris. In this study, we build on previous research and further characterize the genomic and metabolic traits of CAP by recovering two new high-quality CAP genomes - Candidatus Prosthecochloris isoporae and Candidatus Prosthecochloris sp. N1 - from the coral I. palifera endolithic cultures. Genomic analysis revealed that these two CAP genomes have high genomic similarities compared with other Prosthecochloris and harbour several CAP-unique genes. Interestingly, different CAP species harbour various pigment synthesis and sulphur metabolism genes, indicating that individual CAPs can adapt to a diversity of coral microenvironments. A novel high-quality genome of sulfate-reducing bacterium (SRB)- Candidatus Halodesulfovibrio lyudaonia - was also recovered from the same culture. The fact that CAP and various SRB co-exist in coral endolithic cultures and coral skeleton highlights the importance of SRB in the coral endolithic community. Based on functional genomic analysis of Ca. P. sp. N1, Ca. P. isoporae and Ca. H. lyudaonia, we also propose a syntrophic relationship between the SRB and CAP in the coral skeleton.
Collapse
Affiliation(s)
- Yu-Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan, ROC
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Kshitij Tandon
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Molecular and Biological Agricultural Sciences, Program Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Sen-Lin Tang
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Molecular and Biological Agricultural Sciences, Program Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
35
|
Schäfer L, Meinert-Berning C, Kobus S, Höppner A, Smits SHJ, Steinbüchel A. Crystal structure of the sugar acid-binding protein CxaP from a TRAP transporter in Advenella mimigardefordensis strain DPN7 T. FEBS J 2021; 288:4905-4917. [PMID: 33630388 DOI: 10.1111/febs.15789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/01/2022]
Abstract
Recently, CxaP, a sugar acid substrate binding protein (SBP) from Advenella mimigardefordensis strain DPN7T , was identified as part of a novel sugar uptake strategy. In the present study, the protein was successfully crystallized. Although several SBP structures of tripartite ATP-independent periplasmic transporters have already been solved, this is the first structure of an SBP accepting multiple sugar acid ligands. Protein crystals were obtained with bound d-xylonic acid, d-fuconic acid d-galactonic and d-gluconic acid, respectively. The protein shows the typical structure of an SBP of a tripartite ATP-independent periplasmic transporter consisting of two domains linked by a hinge and spanned by a long α-helix. By analysis of the structure, the substrate binding site of the protein was identified. The carboxylic group of the sugar acids interacts with Arg175, whereas the coordination of the hydroxylic groups at positions C2 and C3 is most probably realized by Arg154 and Asn151. Furthermore, it was observed that 2-keto-3-deoxy-d-gluconic acid is bound in protein crystals that were crystallized without the addition of any ligand, indicating that this molecule is prebound to the protein and is displaced by the other ligands if they are available. DATABASE: Structural data of CxaP complexes are available in the worldwide Protein Data Bank (https://www.rcsb.org) under the accession codes 7BBR (2-keto-3-deoxy-d-gluconic acid), 7BCR (d-galactonic acid), 7BCN (d-xylonic acid), 7BCO (d-fuconic acid) and 7BCP (d-gluconic acid).
Collapse
Affiliation(s)
- Lukas Schäfer
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Christina Meinert-Berning
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Sánchez-Ortiz VJ, Domenzain C, Poggio S, Dreyfus G, Camarena L. The periplasmic component of the DctPQM TRAP-transporter is part of the DctS/DctR sensory pathway in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2021; 167. [PMID: 33620307 DOI: 10.1099/mic.0.001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rhodobacter sphaeroides can use C4-dicarboxylic acids to grow heterotrophically or photoheterotropically, and it was previously demonstrated in Rhodobacter capsulatus that the DctPQM transporter system is essential to support growth using these organic acids under heterotrophic but not under photoheterotrophic conditions. In this work we show that in R. sphaeroides this transporter system is essential for photoheterotrophic and heterotrophic growth, when C4-dicarboxylic acids are used as a carbon source. We also found that over-expression of dctPQM is detrimental for photoheterotrophic growth in the presence of succinic acid in the culture medium. In agreement with this, we observed a reduction of the dctPQM promoter activity in cells growing under these conditions, indicating that the amount of DctPQM needs to be reduced under photoheterotrophic growth. It has been reported that the two-component system DctS and DctR activates the expression of dctPQM. Our results demonstrate that in the absence of DctR, dctPQM is still expressed albeit at a low level. In this work, we have found that the periplasmic component of the transporter system, DctP, has a role in both transport and in signalling the DctS/DctR two-component system.
Collapse
Affiliation(s)
- Veronica Jazmín Sánchez-Ortiz
- Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
37
|
Peter MF, Gebhardt C, Glaenzer J, Schneberger N, de Boer M, Thomas GH, Cordes T, Hagelueken G. Triggering Closure of a Sialic Acid TRAP Transporter Substrate Binding Protein through Binding of Natural or Artificial Substrates. J Mol Biol 2021; 433:166756. [PMID: 33316271 DOI: 10.1016/j.jmb.2020.166756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
38
|
Dinoroseobacter shibae Outer Membrane Vesicles Are Enriched for the Chromosome Dimer Resolution Site dif. mSystems 2021; 6:6/1/e00693-20. [PMID: 33436507 PMCID: PMC7901474 DOI: 10.1128/msystems.00693-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. Outer membrane vesicles (OMVs) are universally produced by prokaryotes and play important roles in symbiotic and pathogenic interactions. They often contain DNA, but a mechanism for its incorporation is lacking. Here, we show that Dinoroseobacter shibae, a dinoflagellate symbiont, constitutively secretes OMVs containing DNA. Time-lapse microscopy captured instances of multiple OMV production at the septum during cell division. DNA from the vesicle lumen was up to 22-fold enriched for the region around the terminus of replication (ter). The peak of coverage was located at dif, a conserved 28-bp palindromic sequence required for binding of the site-specific tyrosine recombinases XerC/XerD. These enzymes are activated at the last stage of cell division immediately prior to septum formation when they are bound by the divisome protein FtsK. We suggest that overreplicated regions around the terminus have been repaired by the FtsK-dif-XerC/XerD molecular machinery. The vesicle proteome was clearly dominated by outer membrane and periplasmic proteins. Some of the most abundant vesicle membrane proteins were predicted to be required for direct interaction with peptidoglycan during cell division (LysM, Tol-Pal, Spol, lytic murein transglycosylase). OMVs were 15-fold enriched for the saturated fatty acid 16:00. We hypothesize that constitutive OMV secretion in D. shibae is coupled to cell division. The footprint of the FtsK-dif-XerC/XerD molecular machinery suggests a novel potentially highly conserved route for incorporation of DNA into OMVs. Clearing the division site from small DNA fragments might be an important function of vesicles produced during exponential growth under optimal conditions. IMPORTANCE Gram-negative bacteria continually form vesicles from their outer membrane (outer membrane vesicles [OMVs]) during normal growth. OMVs frequently contain DNA, and it is unclear how DNA can be shuffled from the cytoplasm to the OMVs. We studied OMV cargo in Dinoroseobacter shibae, a symbiont of dinoflagellates, using microscopy and a multi-omics approach. We found that vesicles formed during undisturbed exponential growth contain DNA which is enriched for genes around the replication terminus, specifically, the binding site for an enzyme complex that is activated at the last stage of cell division. We suggest that the enriched genes are the result of overreplication which is repaired by their excision and excretion via membrane vesicles to clear the divisome from waste DNA.
Collapse
|
39
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
40
|
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation. Microorganisms 2020; 9:microorganisms9010003. [PMID: 33374976 PMCID: PMC7822026 DOI: 10.3390/microorganisms9010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions.
Collapse
|
41
|
Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME JOURNAL 2020; 15:503-519. [PMID: 33011742 DOI: 10.1038/s41396-020-00791-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
The symbiosis between bacteria and sponges has arguably the longest evolutionary history for any extant metazoan lineage, yet little is known about bacterial evolution or adaptation in this process. An example of often dominant and widespread bacterial symbionts of sponges is a clade of uncultured and uncharacterised Proteobacteria. Here we set out to characterise this group using metagenomics, in-depth phylogenetic analyses, metatranscriptomics, and fluorescence in situ hybridisation microscopy. We obtained five metagenome-assembled-genomes (MAGs) from different sponge species that, together with a previously published MAG (AqS2), comprise two families within a new gammaproteobacterial order that we named UTethybacterales. Members of this order share a heterotrophic lifestyle but vary in their predicted ability to use various carbon, nitrogen and sulfur sources, including taurine, spermidine and dimethylsulfoniopropionate. The deep branching of the UTethybacterales within the Gammaproteobacteria and their almost exclusive presence in sponges suggests they have entered a symbiosis with their host relatively early in evolutionary time and have subsequently functionally radiated. This is reflected in quite distinct lifestyles of various species of UTethybacterales, most notably their diverse morphologies, predicted substrate preferences, and localisation within the sponge tissue. This study provides new insight into the evolution of metazoan-bacteria symbiosis.
Collapse
|
42
|
Chu X, Li S, Wang S, Luo D, Luo H. Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage. ISME JOURNAL 2020; 15:489-502. [PMID: 32999421 DOI: 10.1038/s41396-020-00790-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Ecologically relevant genes generally show patchy distributions among related bacterial genomes. This is commonly attributed to lateral gene transfer, whereas the opposite mechanism-gene loss-has rarely been explored. Pseudogenization is a major mechanism underlying gene loss, and pseudogenes are best characterized by comparing closely related genomes because of their short life spans. To explore the role of pseudogenization in microbial ecological diversification, we apply rigorous methods to characterize pseudogenes in the 279 newly sequenced Ruegeria isolates of the globally abundant Roseobacter group collected from two typical coastal habitats in Hong Kong, the coral Platygyra acuta and the macroalga Sargassum hemiphyllum. Pseudogenes contribute to ~16% of the accessory genomes of these strains. Ancestral state reconstruction reveals that many pseudogenization events are correlated with ancestral niche shifts. Specifically, genes related to resource scavenging and energy acquisition were often pseudogenized when roseobacters inhabiting carbon-limited and energy-poor coral skeleton switched to other resource-richer niches. For roseobacters inhabiting the macroalgal niches, genes for nitrogen regulation and carbohydrate utilization were important but became dispensable upon shift to coral skeleton where nitrate is abundant but carbohydrates are less available. Whereas low-energy-demanding secondary transporters are more favorable in coral skeleton, ATP-driven primary transporters are preferentially kept in the energy-replete macroalgal niches. Moreover, a large proportion of these families mediate organismal interactions, suggesting their rapid losses by pseudogenization as a potential response to host and niche shift. These findings illustrate an important role of pseudogenization in shaping genome content and driving ecological diversification of marine roseobacters.
Collapse
Affiliation(s)
- Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Siyao Li
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Danli Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China.
| |
Collapse
|
43
|
Herman R, Bennett-Ness C, Maqbool A, Afzal A, Leech A, Thomas GH. The Salmonella enterica serovar Typhimurium virulence factor STM3169 is a hexuronic acid binding protein component of a TRAP transporter. MICROBIOLOGY-SGM 2020; 166:981-987. [PMID: 32894213 PMCID: PMC7660916 DOI: 10.1099/mic.0.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The intracellular pathogen S. Typhimurium is a leading cause of foodborne illness across the world and is known to rely on a range of virulence factors to colonize the human host and cause disease. The gene coding for one such factor, stm3169, was determined to be upregulated upon macrophage entry and its disruption reduces survival in the macrophage. In this study we characterize the STM3169 protein, which forms the substrate binding protein (SBP) of an uncharacterized tripartite ATP-independent periplasmic (TRAP) transporter. Genome context analysis of the genes encoding this system in related bacteria suggests a function in sugar acid transport. We demonstrate that purified STM3169 binds d-glucuronic acid with high affinity and specificity. S. Typhimurium LT2 can use this sugar acid as a sole carbon source and the genes for a probable catabolic pathway are present in the genome. As this gene was previously implicated in macrophage survival, it suggests a role for d-glucuronate as an important carbon source for S. Typhimurium in this environment.
Collapse
Affiliation(s)
- Reyme Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Cavan Bennett-Ness
- Present address: Institute of Genetics and Molecular Medicine, University of Edinburgh WGH, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Abbas Maqbool
- Present address: The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Amna Afzal
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Andrew Leech
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- *Correspondence: Gavin H. Thomas,
| |
Collapse
|
44
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
45
|
Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. Proc Natl Acad Sci U S A 2020; 117:15599-15608. [PMID: 32571930 DOI: 10.1073/pnas.2003434117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
2(S)-dihydroxypropanesulfonate (DHPS) is a microbial degradation product of 6-deoxy-6-sulfo-d-glucopyranose (sulfoquinovose), a component of plant sulfolipid with an estimated annual production of 1010 tons. DHPS is also at millimolar levels in highly abundant marine phytoplankton. Its degradation and sulfur recycling by microbes, thus, play important roles in the biogeochemical sulfur cycle. However, DHPS degradative pathways in the anaerobic biosphere are not well understood. Here, we report the discovery and characterization of two O2-sensitive glycyl radical enzymes that use distinct mechanisms for DHPS degradation. DHPS-sulfolyase (HpsG) in sulfate- and sulfite-reducing bacteria catalyzes C-S cleavage to release sulfite for use as a terminal electron acceptor in respiration, producing H2S. DHPS-dehydratase (HpfG), in fermenting bacteria, catalyzes C-O cleavage to generate 3-sulfopropionaldehyde, subsequently reduced by the NADH-dependent sulfopropionaldehyde reductase (HpfD). Both enzymes are present in bacteria from diverse environments including human gut, suggesting the contribution of enzymatic radical chemistry to sulfur flux in various anaerobic niches.
Collapse
|
46
|
Zolti A, Green SJ, Sela N, Hadar Y, Minz D. The microbiome as a biosensor: functional profiles elucidate hidden stress in hosts. MICROBIOME 2020; 8:71. [PMID: 32438915 PMCID: PMC7243336 DOI: 10.1186/s40168-020-00850-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/28/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microbial communities are highly responsive to environmental cues, and both their structure and activity can be altered in response to changing conditions. We hypothesized that host-associated microbial communities, particularly those colonizing host surfaces, can serve as in situ sensors to reveal environmental conditions experienced by both microorganisms and the host. For a proof-of-concept, we studied a model plant-soil system and employed a non-deterministic gene-centric approach. A holistic analysis was performed using plants of two species and irrigation with water of low quality to induce host stress. Our analyses examined the genetic potential (DNA) and gene expression patterns (RNA) of plant-associated microbial communities, as well as transcriptional profiling of host plants. RESULTS Transcriptional analysis of plants irrigated with treated wastewater revealed significant enrichment of general stress-associated root transcripts relative to plants irrigated with fresh water. Metagenomic analysis of root-associated microbial communities in treated wastewater-irrigated plants, however, revealed enrichment of more specific stress-associated genes relating to high levels of salt, high pH and lower levels of oxygen. Meta-analysis of these differentially abundant genes obtained from other metagenome studies, provided evidence of the link between environmental factors such as pH and oxygen and these genes. Analysis of microbial transcriptional response demonstrated that enriched gene content was actively expressed, which implies contemporary response to elevated levels of pH and salt. CONCLUSIONS We demonstrate here that microbial profiling can elucidate stress signals that cannot be observed even through interrogation of host transcriptome, leading to an alternate mechanism for evaluating in situ conditions experienced by host organisms. This study is a proof-of-concept for the use of microbial communities as microsensors, with great potential for interrogation of a wide range of host systems. Video Abstract.
Collapse
Affiliation(s)
- Avihai Zolti
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Stefan J. Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA
| | - Noa Sela
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization–Volcani Center, 7528809 Rishon Lezion, Israel
| |
Collapse
|
47
|
A Disjointed Pathway for Malonate Degradation by Rhodopseudomonas palustris. Appl Environ Microbiol 2020; 86:AEM.00631-20. [PMID: 32220835 DOI: 10.1128/aem.00631-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of R. palustris with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of R. palustris, which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by rpa2047 to rpa2049 and rpa2541 to rpa2543 were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that R. palustris uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure.IMPORTANCE There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium Rhodopseudomonas palustris grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. R. palustris cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that R. palustris is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.
Collapse
|
48
|
Nieves-Morión M, Flores E, Foster RA. Predicting substrate exchange in marine diatom-heterocystous cyanobacteria symbioses. Environ Microbiol 2020; 22:2027-2052. [PMID: 32281201 DOI: 10.1111/1462-2920.15013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Rachel A Foster
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| |
Collapse
|
49
|
Lansky S, Salama R, Shulami S, Lavid N, Sen S, Schapiro I, Shoham Y, Shoham G. Carbohydrate-Binding Capability and Functional Conformational Changes of AbnE, an Arabino-oligosaccharide Binding Protein. J Mol Biol 2020; 432:2099-2120. [PMID: 32067952 DOI: 10.1016/j.jmb.2020.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
Abstract
ABC importers are membrane proteins responsible for the transport of nutrients into the cells of prokaryotes. Although the structures of ABC importers vary, all contain four conserved domains: two nucleotide-binding domains (NBDs), which bind and hydrolyze ATP, and two transmembrane domains (TMDs), which help translocate the substrate. ABC importers are also dependent on an additional protein component, a high-affinity substrate-binding protein (SBP) that specifically binds the target ligand for delivery to the appropriate ABC transporter. AbnE is a SBP belonging to the ABC importer for arabino-oligosaccharides in the Gram-positive thermophilic bacterium Geobacillus stearothermophilus. Using isothermal titration calorimetry (ITC), purified AbnE was shown to bind medium-sized arabino-oligosaccharides, in the range of arabino-triose (A3) to arabino-octaose (A8), all with Kd values in the nanomolar range. We describe herein the 3D structure of AbnE in its closed conformation in complex with a wide range of arabino-oligosaccharide substrates (A2-A8). These structures provide the basis for the detailed structural analysis of the AbnE-sugar complexes, and together with complementary quantum chemical calculations, site-specific mutagenesis, and isothermal titration calorimetry (ITC) experiments, provide detailed insights into the AbnE-substrate interactions involved. Small-angle X-ray scattering (SAXS) experiments and normal mode analysis (NMA) are used to study the conformational changes of AbnE, and these data, taken together, suggest clues regarding its binding mode to the full ABC importer.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Smadar Shulami
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Noa Lavid
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Gil Shoham
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
50
|
Boll M, Geiger R, Junghare M, Schink B. Microbial degradation of phthalates: biochemistry and environmental implications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:3-15. [PMID: 31364812 DOI: 10.1111/1758-2229.12787] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 05/10/2023]
Abstract
The environmentally relevant xenobiotic esters of phthalic acid (PA), isophthalic acid (IPA) and terephthalic acid (TPA) are produced on a million ton scale annually and are predominantly used as plastic polymers or plasticizers. Degradation by microorganisms is considered as the most effective means of their elimination from the environment and proceeds via hydrolysis to the corresponding PA isomers and alcohols under oxic and anoxic conditions. Further degradation of PA, IPA and TPA differs fundamentally between anaerobic and aerobic microorganisms. The latter introduce hydroxyl functionalities by dioxygenases to facilitate subsequent decarboxylation by either aromatizing dehydrogenases or cofactor-free decarboxylases. In contrast, anaerobic bacteria activate the PA isomers to the respective thioesters using CoA ligases or CoA transferases followed by decarboxylation to the central intermediate benzoyl-CoA. Decarboxylases acting on the three PA CoA thioesters belong to the UbiD enzyme family that harbour a prenylated flavin mononucleotide (FMN) cofactor to achieve the mechanistically challenging decarboxylation. Capture of the extremely instable PA-CoA intermediate is accomplished by a massive overproduction of phthaloyl-CoA decarboxylase and a balanced production of PA-CoA forming/decarboxylating enzymes. The strategy of anaerobic phthalate degradation probably represents a snapshot of an ongoing evolution of a xenobiotic degradation pathway via a short-lived reaction intermediate.
Collapse
Affiliation(s)
- Matthias Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Robin Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Madan Junghare
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| |
Collapse
|