1
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Ezrin and Radixin Differentially Modulate Cell Surface Expression of Programmed Death Ligand-1 in Human Pancreatic Ductal Adenocarcinoma KP-2 Cells. IMMUNO 2022. [DOI: 10.3390/immuno2010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, such as immune checkpoint inhibitors against programmed death ligand-1 (PD-L1), have not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Despite the critical role of PD-L1 in various types of cancers, the regulatory mechanism of PD-L1 expression on the cell surface of PDAC is poorly understood. Therefore, uncovering potential modulators of cell surface localisation of PD-L1 may provide a new strategy to improve ICB therapy in patients with PDAC. Here, we examined the role of ezrin/radixin/moesin (ERM) family scaffold proteins that crosslink transmembrane proteins with the actin cytoskeleton in the surface localisation of PD-L1 in KP-2 cells, a human PDAC cell line. Our results demonstrated the abundant protein expression of PD-L1, ezrin, and radixin, but not moesin, as well as their colocalisation in the plasma membrane. Interestingly, immunoprecipitation analysis detected the molecular interaction of PD-L1 with ezrin and radixin. Moreover, gene silencing of ezrin moderately decreased the mRNA and cell surface expression of PD-L1, while that of radixin greatly decreased the surface expression of PD-L1 without altering the mRNA levels. Thus, radixin and ezrin differentially modulate the cell surface localisation of PD-L1 in KP-2 cells, highlighting a potential therapeutic target to improve the current ICB therapy in PDAC.
Collapse
|
4
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Moesin as a prognostic indicator of lung adenocarcinoma improves prognosis by enhancing immune lymphocyte infiltration. World J Surg Oncol 2021; 19:109. [PMID: 33838692 PMCID: PMC8037891 DOI: 10.1186/s12957-021-02229-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ezrin-radixin-moesin (ERM) have been explored in many cancer processes. Moesin, as its component, has also been found to play an important role in the prognosis of cancer patients, tumor metastasis, drug resistance, and others. Especially in regulating the immunity, but most results came from direct studies on immune cells, there is no clear conclusion on whether moesin has similar effects in tumor cells. And moesin has certain research results in many cancers in other aspects, but there are few about moesin in lung adenocarcinoma (LUAD). METHODS We detect the expression of moesin in 82 LUAD and matched normal tissue samples by immunohistochemistry. Besides, for the pathological feature, we did a detailed statistical analysis. And with the help of various databases, we have done in-depth exploration of moesin's ability to enhance the extent of immune lymphocyte infiltration. RESULTS Moesin is a poor expression in lung cancer tissues than the corresponding normal samples. And this phenomenon had a strongly associated with the prognosis and TNM stage of these LUAD patients. Moesin can enhance the infiltration of multiple immune lymphocytes in lung cancer. And this may be related to the interaction between moesin and various inflammatory molecules. CONCLUSIONS Moesin is a newly index for the prognosis of LUAD and improves the prognosis of LUAD patients by regulating a variety of inflammation-related molecules to enhance immune lymphocytes infiltration.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
5
|
Peptidylarginine Deiminase Inhibitor Application, Using Cl-Amidine, PAD2, PAD3 and PAD4 Isozyme-Specific Inhibitors in Pancreatic Cancer Cells, Reveals Roles for PAD2 and PAD3 in Cancer Invasion and Modulation of Extracellular Vesicle Signatures. Int J Mol Sci 2021; 22:ijms22031396. [PMID: 33573274 PMCID: PMC7866560 DOI: 10.3390/ijms22031396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.
Collapse
|
6
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
7
|
Zurmukhtashvili M, Machavariani A, Dugashvili G, Grdzelidze T, Gogilashvili K, Menabde G, Abiatari I, Marks L. Mesenchymal stem cell transplantation attenuates growth of chemotherapy treated oral squamous cell carcinoma in an animal model. J Oral Pathol Med 2020; 49:655-664. [PMID: 32107794 DOI: 10.1111/jop.13006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/23/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have demonstrated mesenchymal stem cell migration toward tumor locations. When applied locally, MSCs interact with the locally residing host cells. The mechanisms behind this are still unclear. We aimed to detect the possible action mechanisms of MSCs on the in vivo growth of primary human oral squamous cell carcinoma. METHODS In mouse model of OSSC, chemotherapy with Cisplatin was done beginning from 9 day of tumor visualization. 3 weeks after tumor cell injection cultivated MSCs were administrated in tail vein or directly intra-tumorally. Animals underwent surveillance and afterward were sacrificed. Tumor growth was measured. MSCs biodistribution was assessed with bioluminescent analysis. Tumor tissues were tested morphologically and immunohistochemically for angiogenesis, hypoxia status, and cell apoptosis. RESULTS In the group treated with Cisplatin in combination with mesenchymal stem cell injection, the average size of the tumor was 98.9 ± 7.65 mm3 . In the experimental group, tumor tissues were less outlined and the presence of necrotic areas and connective tissue basal layers was detected. Immunohistochemical surveys with CD31 and anti-carbonic anhydrase 9 demonstrated strongly developed micro-vessel structures and small isles of hypoxia in the tumor tissues. TUNEL assay revealed in the same group that tumor tissues were mostly comprised of apoptotic cells. Viable cell communities presented as small isles. CONCLUSION The study demonstrates that intra-tumorally injected MSCs, combined with Cisplatin, leads to a minimal hypoxia status and increased apoptotic activity in tumor tissues, compared with the control group. This finding can be explained with better distribution of Cisplatin due to increased angiogenesis.
Collapse
Affiliation(s)
- Marika Zurmukhtashvili
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia.,Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | - Giorgi Dugashvili
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia.,Oral Health in Special Needs, Gent University Hospital, Gent, Belgium
| | | | | | - Giorgi Menabde
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Ivane Abiatari
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Luc Marks
- Oral Health in Special Needs, Gent University Hospital, Gent, Belgium.,Paediatric and Preventive Dentistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Veite-Schmahl MJ, Regan DP, Rivers AC, Nowatzke JF, Kennedy MA. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling. J Vis Exp 2017. [PMID: 28872120 DOI: 10.3791/55647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1acre/+;LSL-KrasG12D/+) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.
Collapse
Affiliation(s)
| | - Daniel P Regan
- Department of Chemistry & Biochemistry, Miami University
| | - Adam C Rivers
- Department of Chemistry & Biochemistry, Miami University
| | - Joseph F Nowatzke
- Department of Chemistry & Biochemistry, Miami University; College of Medicine, Central Michigan University
| | | |
Collapse
|
9
|
Ansa-Addo EA, Zhang Y, Yang Y, Hussey GS, Howley BV, Salem M, Riesenberg B, Sun S, Rockey DC, Karvar S, Howe PH, Liu B, Li Z. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest 2017; 127:1321-1337. [PMID: 28287407 DOI: 10.1172/jci89281] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that are important for organizing membrane domains and receptor signaling and regulating the migration of effector T cells. Whether moesin plays any role during the generation of TGF-β-induced Tregs (iTregs) is unknown. Here, we have discovered that moesin is translationally regulated by TGF-β and is also required for optimal TGF-β signaling that promotes efficient development of iTregs. Loss of moesin impaired the development and function of both peripherally derived iTregs and in vitro-induced Tregs. Mechanistically, we identified an interaction between moesin and TGF-β receptor II (TβRII) that allows moesin to control the surface abundance and stability of TβRI and TβRII. We also found that moesin is required for iTreg conversion in the tumor microenvironment, and the deletion of moesin from recipient mice supported the rapid expansion of adoptively transferred CD8+ T cells against melanoma. Our study establishes moesin as an important regulator of the surface abundance and stability of TβRII and identifies moesin's role in facilitating the efficient generation of iTregs. It also provides an advancement to our understanding about the role of the ERM proteins in regulating signal transduction pathways and suggests that modulation of moesin is a potential therapeutic target for Treg-related immune disorders.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Differentiation
- Cell Membrane/metabolism
- Cells, Cultured
- Female
- HEK293 Cells
- Humans
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/physiology
- Neoplasm Transplantation
- Protein Binding
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Stability
- Protein Transport
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes, Regulatory/physiology
- Transcriptional Activation
- Transforming Growth Factor beta/physiology
- Tumor Escape
- Up-Regulation
Collapse
|
10
|
Zhang WW, Zhan SH, Geng CX, Sun X, Erkan M, Kleeff J, Xie XJ. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells. Mol Med Rep 2016; 14:3627-33. [PMID: 27573419 PMCID: PMC5042774 DOI: 10.3892/mmr.2016.5681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 07/01/2016] [Indexed: 11/22/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in PSCs. Silencing of ALCAM by siRNA revealed no significant alteration in the invasion of pancreatic cancer cells, however, it inhibited the invasive ability of PSCs, and decreased the interaction between Panc-1 cells and PSCs. In conclusion, ALCAM is upregulated in PSCs of pancreatic cancer tissues, suggesting a potential role of ALCAM in regulating pancreatic cancer cell-PSC interactions.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Shu-Hui Zhan
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Chang-Xin Geng
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Xin Sun
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Mert Erkan
- Department of Surgery, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Jörg Kleeff
- Department of Surgery, Technical University of Munich, D-80333 Munich, Germany
| | - Xiang-Jun Xie
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Abstract
In all eukaryotes, the plasma membrane is critically important as it maintains the architectural integrity of the cell. Proper anchorage and interaction between the plasma membrane and the cytoskeleton is critical for normal cellular processes. The ERM (ezrin-radixin-moesin) proteins are a class of highly homologous proteins involved in linking the plasma membrane to the cortical actin cytoskeleton. This review takes a succinct look at the biology of the ERM proteins including their structure and function. Current reports on their regulation that leads to activation and deactivation was examined before taking a look at the different interacting partners. Finally, emerging roles of each of the ERM family members in cancer was highlighted.
Collapse
Affiliation(s)
- Godwin A Ponuwei
- Cell migration laboratory, Molecular and Cellular Medicine Unit, Department of Biomedical Sciences, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Berkshire, UK. .,Molecular and Cellular Medicine unit, Department of Biomedical sciences, School of Life Sciences, Hopkins Building, Whiteknights Campus, University of Reading, Reading, Berkshire, UK.
| |
Collapse
|
12
|
Song LJ, Liu Q, Meng XR, Li SL, Wang LX, Fan QX, Xuan XY. DLC-1 is an independent prognostic marker and potential therapeutic target in hepatocellular cancer. Diagn Pathol 2016; 11:19. [PMID: 26846339 PMCID: PMC4743322 DOI: 10.1186/s13000-016-0470-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/28/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The 5-year survival rate of patients with hepatocellular cancer (HCC) was very low because of invasion and metastasis in the early stage. Biomarkers might help predict early occurrence of invasion and metastasis. Accumulating evidence has shown that deleted in liver cancer-1 (DLC1) may be considered as a metastasis suppressor gene in numerous solid and hematological cancers. However, its prognostic role and mechanisms that regulate and coordinate these activities remain poorly understood. METHODS With the method of immunohistochemistry, the expression of DLC-1 as well as Rho A, ROCK2, moesin had been characterized in 80 HCC tissues and adjacent noncancerous tissues. The correlation between their expression and their relationships with clinicopathological characteristics of HCC were also investigated. In addition, the prognostic value of DLC1 expression within the tumor tissues was assessed by Cox regression and Kaplan-Meier analysis. RESULTS DLC1 expression was significantly lower in HCC tissues than in adjacent noncancerous tissues, and DLC-1 expression was found to be negatively correlated with tumor differentiation, TNM stage and lymph node metastasis. Furthermore, DLC-1 expression was found to inversely correlate with Rho A, ROCK2 and moesin which were all highly expressed in HCC tissues. Kaplan-Meier analysis showed that significantly longer 5-year survival rate was seen in HCC patients with higher DLC1 expression, compared to those with lower expression of DLC1. Multivariate Cox proportional hazard analyses revealed that DLC1 was an independent factor affecting the overall survival probability. CONCLUSION DLC1 could be served as a tumor suppressor gene in the progression especially in the invasion and metastasis of HCC. DLC1 perhaps played its role by regulating the expression of Rho A, ROCK2 and moesin. Evaluation of the expression of DLC-1 might be a good prognostic marker for patients with HCC.
Collapse
Affiliation(s)
- L J Song
- Department of Oncology, the first affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - Q Liu
- Department of Neurosurgery, the fifth affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - X R Meng
- Department of Oncology, the first affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - Sh L Li
- Department of Pathology, the first affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - L X Wang
- Department of Oncology, the first affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - Q X Fan
- Department of Oncology, the first affiliated hospital of Zhengzhou University, Henan, 450000, China.
| | - X Y Xuan
- Department of Microbiology and Immunology, Basic Medical School of Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
13
|
Regulation of Son of sevenless by the membrane-actin linker protein ezrin. Proc Natl Acad Sci U S A 2013; 110:20587-92. [PMID: 24297905 DOI: 10.1073/pnas.1222078110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras.
Collapse
|
14
|
Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. J Hematol Oncol 2013; 6:67. [PMID: 24010981 PMCID: PMC3844582 DOI: 10.1186/1756-8722-6-67] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera. Methods and results The serum reactivity of GEM from inception to invasive cancer, and in resectable or advanced human PDAC was tested by two-dimensional electrophoresis Western blot against proteins from murine and human PDAC cell lines, respectively. A common mouse-to-human autoantibody signature, directed against six antigens identified by MALDI-TOF mass spectrometry, was determined. Of the six antigens, Ezrin displayed the highest frequency of autoantibodies in GEM with early disease and in PDAC patients with resectable disease. The diagnostic value of Ezrin-autoantibodies to discriminate PDAC from controls was further shown by ELISA and ROC analyses (P < 0.0001). This observation was confirmed in prediagnostic sera from the EPIC prospective study in patients who eventually developed PDAC (with a mean time lag of 61.2 months between blood drawing and PDAC diagnosis). A combination of Ezrin-autoantibodies with CA19.9 serum levels and phosphorylated α-Enolase autoantibodies showed an overall diagnostic accuracy of 0.96 ± 0.02. Conclusions Autoantibodies against Ezrin are induced early in PDAC and their combination with other serological markers may provide a predictive and diagnostic signature.
Collapse
|
15
|
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 2012; 11:19. [PMID: 22471946 PMCID: PMC3350462 DOI: 10.1186/1476-4598-11-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Methods Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.
Collapse
|
16
|
Mhawech-Fauceglia P, Wang D, Lele S, Frederick PJ, Pejovic T, Liu S. Claudin7 and moesin in endometrial Adenocarcinoma; a retrospective study of 265 patients. BMC Res Notes 2012; 5:65. [PMID: 22272721 PMCID: PMC3280166 DOI: 10.1186/1756-0500-5-65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/24/2012] [Indexed: 01/06/2023] Open
Abstract
Background Metastasis is the main cause of death in cancer and is a multistep process. Moesin (MSN), a member of the ezrin-rdixin-moesin family and Claudin7 (CLDN7), a tight junction protein, both play a role in tumor cell metastasis. Previously, we found an over-expression of MSN and under-expression of CLDN7 at the mRNA level in uterine serous carcinoma in comparison to uterine endometrioid adenocarcinoma. The purpose of this study is to determine the protein expression of MSN and CLDN7 in endometrial cancer (EC) and to evaluate their prognostic value. Two hundred sixty-five patients with EC were retrieved from the archives. MSN and CLDN7 immunostaining were performed on the tissue paraffin sections. The expression of each antibody was reported and then correlated with clinicopathological prognostic factors including age, tumor grade, tumor stage, lympho-vascular involvement, depth of myometrial invasion, overall survival (OS), disease free survival (DFS) and death of disease (DOD). Results MSN and CLDN were expressed in 46% and 52% of overall cases. We observed an association between MSN+ staining and tumor grade, and serous and clear cell carcinoma subtypes (p < 0.001 each). There was an association between CLDN7+ staining and low tumor grade and endometrioid adenocarcinoma subtype (p < 0.001 and 0.001 respectively). However, no association between MSN and CLDN7 expression and outcome including OS, DOD, and DFS was found. Conclusion A significant prognostic value of MSN and CLDN7 in predicting disease outcomes in patients with EC was not demonstrated. Nevertheless, the high percentage of EC cases with MSN and CLDN7 immunoexpression, and their association with tumor grade and subtypes, suggests that these proteins might play a role in tumorigenesis of endometrial adenocarcinomas. Future studies are needed to shed light on their mechanistic properties in EC cells.
Collapse
|
17
|
Sperka T, Geißler KJ, Merkel U, Scholl I, Rubio I, Herrlich P, Morrison HL. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. PLoS One 2011; 6:e27511. [PMID: 22132106 PMCID: PMC3221661 DOI: 10.1371/journal.pone.0027511] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) participate in a multitude of signaling pathways, some of them via the small G-protein Ras. An important component in the activation of Ras is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. PRINCIPAL FINDINGS We can now demonstrate that the activation of Ras requires, in addition, the essential participation of ezrin, radixin and/or moesin (ERM), a family of actin-binding proteins, and of actin. Disrupting either the interaction of the ERM proteins with co-receptors, down-regulation of ERM proteins by siRNA, expression of dominant-negative mutants of the ERM proteins or disruption of F-actin, abolishes growth factor-induced Ras activation. Ezrin/actin catalyzes the formation of a multiprotein complex consisting of RTK, co-receptor, Grb2, SOS and Ras. We also identify binding sites for both Ras and SOS on ezrin; mutations of these binding sites destroy the interactions and inhibit Ras activation. Finally, we show that the formation of the ezrin-dependent complex is necessary to enhance the catalytic activity of SOS and thereby Ras activation. CONCLUSIONS Taking these findings together, we propose that the ERM proteins are novel scaffolds at the level of SOS activity control, which is relevant for both normal Ras function and dysfunction known to occur in several human cancers.
Collapse
Affiliation(s)
- Tobias Sperka
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katja J. Geißler
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ulrike Merkel
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ingmar Scholl
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, Friedrich-Schiller-University, Jena, Germany
| | - Peter Herrlich
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Helen L. Morrison
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
18
|
Walsh JE, Young MRI. TGF-beta regulation of focal adhesion proteins and motility of premalignant oral lesions via protein phosphatase 1. Anticancer Res 2011; 31:3159-3164. [PMID: 21965722 PMCID: PMC3622218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Premalignant oral lesions have a high incidence of recurrence and progression to malignant disease and, although studies have shown the contribution of transforming growth factor β (TGF-β) to cancer progression, none have been conducted with premalignant oral lesion cells to determine the impact of TGF-β in stimulating properties that are characteristic of more invasive cells. The present study focused on TGF-β-modulation of paxillin and the serine/threonine protein phosphatase PP-1, and the impact on cellular motility. These studies show that TGF-β stimulates premalignant lesion cell motility and up regulates expression of paxillin, as well as its co-localization with PP-1, while concurrently diminishing the level of paxillin serine phosphorylation. The TGF-β-mediated up regulation of paxillin and co-localization with actin, as well as the TGF-β-stimulated motility of premalignant lesion cells, were all blocked by inhibiting PP-1, indicating their dependence on PP-1 activity. These studies suggest interplay between TGF-β and PP-1 in promoting a more malignant phenotype in premalignant oral lesion cells.
Collapse
Affiliation(s)
- Jarrett E Walsh
- Research Service (151), Ralph H. Johnson VA Medical Center, Charleston, SC 29401, U.S.A
| | | |
Collapse
|
19
|
Gene expression profiles in stage I uterine serous carcinoma in comparison to grade 3 and grade 1 stage I endometrioid adenocarcinoma. PLoS One 2011; 6:e18066. [PMID: 21448288 PMCID: PMC3063241 DOI: 10.1371/journal.pone.0018066] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/19/2011] [Indexed: 01/21/2023] Open
Abstract
Background Endometrial cancer is the most common gynecologic malignancy in the developed countries. Clinical studies have shown that early stage uterine serous carcinoma (USC) has outcomes similar to early stage high grade endometrioid adenocarcinoma (EAC-G3) than to early stage low grade endometrioid adenocarcinoma (EAC-G1). However, little is known about the origin of these different clinical outcomes. This study applied the whole genome expression profiling to explore the expression difference of stage I USC (n = 11) relative to stage I EAC-G3 (n = 11) and stage I EAC-G1 (n = 11), respectively. Methodology/Principal Finding We found that the expression difference between USC and EAC-G3, as measured by the number of differentially expressed genes (DEGs), is consistently less than that found between USC and EAC-G1. Pathway enrichment analyses suggested that DEGs specific to USC vs. EAC-G3 are enriched for genes involved in signaling transduction, while DEGs specific to USC vs. EAC-G1 are enriched for genes involved in cell cycle. Gene expression differences for selected DEGs are confirmed by quantitative RT-PCR with a high validation rate. Conclusion This data, although preliminary, indicates that stage I USC is genetically similar to stage I EAC-G3 compared to stage I EAC-G1. DEGs identified from this study might provide an insight in to the potential mechanisms that influence the clinical outcome differences between endometrial cancer subtypes. They might also have potential prognostic and therapeutic impacts on patients diagnosed with uterine cancer.
Collapse
|
20
|
Bartholow TL, Chandran UR, Becich MJ, Parwani AV. Immunohistochemical staining of radixin and moesin in prostatic adenocarcinoma. BMC Clin Pathol 2011; 11:1. [PMID: 21235778 PMCID: PMC3029218 DOI: 10.1186/1472-6890-11-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/14/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Some members of the Protein 4.1 superfamily are believed to be involved in cell proliferation and growth, or in the regulation of these processes. While the expression levels of two members of this family, radixin and moesin, have been studied in many tumor types, to our knowledge they have not been investigated in prostate cancer. METHODS Tissue microarrays were immunohistochemically stained for either radixin or moesin, with the staining intensities subsequently quantified and statistically analyzed using One-Way ANOVA or nonparametric equivalent with subsequent Student-Newman-Keuls tests for multiple comparisons. There were 11 cases of normal donor prostates (NDP), 14 cases of benign prostatic hyperplasia (BPH), 23 cases of high-grade prostatic intraepithelial neoplasia (HGPIN), 88 cases of prostatic adenocarcinoma (PCa), and 25 cases of normal tissue adjacent to adenocarcinoma (NAC) analyzed in the microarrays. RESULTS NDP, BPH, and HGPIN had higher absolute staining scores for radixin than PCa and NAC, but with a significant difference observed between only HGPIN and PCa (p = < 0.001) and HGPIN and NAC (p = 0.001). In the moesin-stained specimens, PCa, NAC, HGPIN, and BPH all received absolute higher staining scores than NDP, but the differences were not significant. Stage 4 moesin-stained PCa had a significantly reduced staining intensity compared to Stage 2 (p = 0.003). CONCLUSIONS To our knowledge, these studies represent the first reports on the expression profiles of radixin and moesin in prostatic adenocarcinoma. The current study has shown that there were statistically significant differences observed between HGPIN and PCa and HGPIN and NAC in terms of radixin expression. The differences in the moesin profiles by tissue type were not statistically significant. Additional larger studies with these markers may further elucidate their potential roles in prostatic neoplasia progression.
Collapse
Affiliation(s)
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Becich
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anil V Parwani
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Canals D, Jenkins RW, Roddy P, Hernández-Corbacho MJ, Obeid LM, Hannun YA. Differential effects of ceramide and sphingosine 1-phosphate on ERM phosphorylation: probing sphingolipid signaling at the outer plasma membrane. J Biol Chem 2010; 285:32476-85. [PMID: 20679347 DOI: 10.1074/jbc.m110.141028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
ERM proteins are regulated by phosphorylation of the most C-terminal threonine residue, switching them from an activated to an inactivated form. However, little is known about the control of this regulation. Previous work in our group demonstrated that secretion of acid sphingomyelinase acts upstream of ERM dephosphorylation, suggesting the involvement of sphingomyelin (SM) hydrolysis in ERM regulation. To define the role of specific lipids, we employed recombinant bacterial sphingomyelinase (bSMase) as a direct probe of SM metabolism at the plasma membrane. bSMase induced a rapid dose- and time-dependent decrease in ERM dephosphorylation. ERM dephosphorylation was driven by ceramide generation and not by sphingomyelin depletion, as shown using recombinant sphingomyelinase D. The generation of ceramide at the plasma membrane was sufficient for ERM regulation, and no intracellular SM hydrolysis was required, as was visualized using Venus-tagged lysenin probe, which specifically binds SM. Interestingly, hydrolysis of plasma membrane bSMase-induced ceramide using bacterial ceramidase caused ERM hyperphosphorylation and formation of cell surface protrusions. The effects of plasma membrane ceramide hydrolysis were due to sphingosine 1-phosphate formation, as ERM phosphorylation was blocked by an inhibitor of sphingosine kinase and induced by sphingosine 1-phosphate. Taken together, these results demonstrate a new regulatory mechanism of ERM phosphorylation by sphingolipids with opposing actions of ceramide and sphingosine 1-phosphate. The approach also defines a tool kit to probe sphingolipid signaling at the plasma membrane.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hong X, Michalski CW, Kong B, Zhang W, Raggi MC, Sauliunaite D, De Oliveira T, Friess H, Kleeff J. ALCAM is associated with chemoresistance and tumor cell adhesion in pancreatic cancer. J Surg Oncol 2010; 101:564-9. [PMID: 20461761 DOI: 10.1002/jso.21538] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Cell-cell adhesion is a major factor in integrity of epithelia which is frequently disturbed in cancer leading to local invasion and distant metastasis. METHODS To define expression and function of activated leukocyte cell adhesion molecule (ALCAM, CD166) in pancreatic cancer and in pancreatic neuroendocrine tumors (PNET), microarray analyses, RT-PCR, immunohistochemistry, RNAi, adhesion, migration, invasion, and chemoresistance assays were used. RESULTS We demonstrate that expression of ALCAM is altered and its serum levels are increased in pancreatic ductal adenocarcinoma (PDAC). ALCAM was expressed on the membranes of islet cells in the normal pancreas whereas normal pancreatic ducts were ALCAM-negative. In PDAC, ALCAM expression was generally rare though in some tumors, membranous, or cytoplasmic ALCAM was found. PNET were mostly ALCAM-positive with a cytoplasmic staining pattern which was in contrast to the membrane expression observed in non-transformed islet cells. In vitro, ALCAM silencing using RNAi had no effects on growth or invasion of pancreatic cancer cells but reduced cell adhesion and induced chemoresistance. In neuroendocrine tumor cell lines, silencing of ALCAM decreased cell growth. CONCLUSIONS We propose ALCAM as a novel serum biomarker in human pancreatic tumors which is associated with cell adhesion, growth and chemoresistance.
Collapse
Affiliation(s)
- Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|