1
|
Elucidating the Anti-Tumorigenic Efficacy of Oltipraz, a Dithiolethione, in Glioblastoma. Cells 2022; 11:cells11193057. [PMID: 36231019 PMCID: PMC9562012 DOI: 10.3390/cells11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, displays a highly infiltrative growth pattern and remains refractory to chemotherapy. Phytochemicals carrying specificity and low cytotoxicity may serve as potent and safer alternatives to conventional chemotherapy for treating GBM. We have evaluated the anticancer effects of Oltipraz (Olt), a synthetic dithiolethione found in many vegetables, including crucifers. While Olt exposure was non-toxic to the HEK-293 cell line, it impaired the cell growth in three GBM cell lines (LN18, LN229, and U-87 MG), arresting those at the G2/M phase. Olt-exposed GBM cells induced the generation of reactive oxygen species (ROS), mitochondrial depolarization, caspase 3/7-mediated apoptosis, nuclear condensation, and DNA fragmentation, and decreased glutathione, a natural ROS scavenger, as well as vimentin and β-catenin, the EMT-associated markers. Its effect on a subpopulation of GBM cells exhibiting glioblastoma stem cell (GSCs)-like characteristics revealed a reduced expression of Oct4, Sox2, CD133, CD44, and a decrease in ALDH+, Nestin+ and CD44+ cells. In contrast, there was an increase in the expression of GFAP and GFAP+ cells. The Olt also significantly suppressed the oncosphere-forming ability of cells. Its efficacy was further validated in vivo, wherein oral administration of Olt could suppress the ectopically established GBM tumor growth in SCID mice. However, there was no alteration in body weight, organ ratio, and biochemical parameters, reflecting the absence of any toxicity otherwise. Together, our findings could demonstrate the promising chemotherapeutic efficacy of Olt with potential implications in treating GBM.
Collapse
|
2
|
Peng R, Li B, Chen S, Shi Z, Yu L, Gao Y, Yang X, Lu L, Wang H. Deleterious Rare Mutations of GLI1 Dysregulate Sonic Hedgehog Signaling in Human Congenital Heart Disease. Front Cardiovasc Med 2022; 9:798033. [PMID: 35445092 PMCID: PMC9014293 DOI: 10.3389/fcvm.2022.798033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The Glioma-associated oncogene (Gli) family members of zinc finger DNA-binding proteins are core effectors of Sonic hedgehog (SHH) signaling pathway. Studies in model organisms have identified that the Gli genes play critical roles during organ development, including the heart, brain, kidneys, etc. Deleterious mutations in GLI genes have previously been revealed in several human developmental disorders, but few in congenital heart disease (CHD). In this study, the mutations in GLI1-3 genes were captured by next generation sequencing in human cohorts composed of 412 individuals with CHD and 213 ethnically matched normal controls. A total of 20 patient-specific nonsynonymous rare mutations in coding regions of human GLI1-3 genes were identified. Functional analyses showed that GLI1 c.820G> T (p.G274C) is a gain-of-function mutation, while GLI1 c.878G>A (p.R293H) and c.1442T>A (p.L481X) are loss-of-function mutations. Our findings suggested that deleterious rare mutations in GLI1 gene broke the balance of the SHH signaling pathway regulation and may constitute a great contribution to human CHD, which shed new light on understanding genetic mechanism of embryo cardiogenesis regulated by SHH signaling.
Collapse
Affiliation(s)
- Rui Peng
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Binbin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States
| | - Shuxia Chen
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Zhiwen Shi
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Liwei Yu
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- SUNY Downstate Medical Center, Children's Hospital at Downstate, Brooklyn, NY, United States
| | - Yunqian Gao
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyan Yang
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lei Lu
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hongyan Wang
- NHC Key Laboratory of Reproduction Regulation, State Key Laboratory of Genetic Engineering, Obstetrics and Gynecology Hospital, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Children's Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang Y, Zhao Y, Song X, Luo H, Sun J, Han C, Gu X, Li J, Cai G, Zhu Y, Liu Z, Wei L, Wei ZZ. Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments. Front Psychiatry 2020; 11:80. [PMID: 32425815 PMCID: PMC7205035 DOI: 10.3389/fpsyt.2020.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Severe mental illnesses (SMI) such as schizophrenia and bipolar disorder affect 2-4% of the world population. Current medications and diagnostic methods for mental illnesses are not satisfying. In animal studies, stem cell therapy is promising for some neuropsychiatric disorders and cognitive/social deficits, not only treating during development (targeting modulation and balancing) but also following neurodegeneration (cell replacement and regenerating support). We believe that novel interventions such as modulation of particular cell populations to develop cell-based treatment can improve cognitive and social functions in SMI. With pathological synaptic/myelin damage, oligodendrocytes seem to play a role. In this review, we have summarized oligodendrogenesis mechanisms and some related calcium signals in neural cells and stem/progenitor cells. The related benefits from endogenous stem/progenitor cells within the brain and exogenous stem cells, including multipotent mesenchymal-derived stromal cells (MSC), fetal neural stem cells (NSC), pluripotent stem cells (PSC), and differentiated progenitors, are discussed. These also include stimulating mechanisms of oligodendrocyte proliferation, maturation, and myelination, responsive to the regenerative effects by both endogenous stem cells and transplanted cells. Among the mechanisms, calcium signaling regulates the neuronal/glial progenitor cell (NPC/GPC)/oligodendrocyte precursor cell (OPC) proliferation, migration, and differentiation, dendrite development, and synaptic plasticity, which are involved in many neuropsychiatric diseases in human. On the basis of numerous protein annotation and protein-protein interaction databases, a total of 119 calcium-dependent/activated proteins that are related to neuropsychiatry in human are summarized in this investigation. One of the advanced methods, the calcium/cation-channel-optogenetics-based stimulation of stem cells and transplanted cells, can take advantage of calcium signaling regulations. Intranasal-to-brain delivery of drugs and stem cells or local delivery with the guidance of brain imaging techniques may provide a unique new approach for treating psychiatric disorders. It is also expected that preconditioning stem cell therapy following precise brain imaging as pathological confirmation has high potential if translated to cell clinic use. Generally, modulable cell transplantation followed by stimulations should provide paracrine protection, synaptic modulation, and myelin repair for the brain in SMI.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingying Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Hua Luo
- Emory Critical Care Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chunyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jun Li
- Department of Biological Psychiatry, Peking University Sixth Hospital, Beijing, China
- Department of Biological Psychiatry, Peking University Institute of Mental Health, Beijing, China
- Department of Biological Psychiatry, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Department of Biological Psychiatry, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Guilan Cai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhandong Liu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Deciphering the Epitranscriptomic Signatures in Cell Fate Determination and Development. Stem Cell Rev Rep 2019; 15:474-496. [DOI: 10.1007/s12015-019-09894-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Strate I, Tessadori F, Bakkers J. Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development 2015; 142:1767-76. [PMID: 25968312 DOI: 10.1242/dev.113894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 'Knypek' is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.
Collapse
Affiliation(s)
- Ina Strate
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Federico Tessadori
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Jeroen Bakkers
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands Department of Medical Physiology, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
6
|
Parikh A, Wu J, Blanton RM, Tzanakakis ES. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:377-92. [PMID: 25813860 DOI: 10.1089/ten.teb.2014.0662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies.
Collapse
Affiliation(s)
- Abhirath Parikh
- 1 Lonza Walkersville, Inc. , Lonza Group, Walkersville, Maryland
| | - Jincheng Wu
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts
| | - Robert M Blanton
- 3 Division of Cardiology, Molecular Cardiology Research Institute , Tufts Medical Center, Tufts School of Medicine, Boston, Massachusetts
| | - Emmanuel S Tzanakakis
- 2 Department of Chemical and Biological Engineering, Tufts University , Medford, Massachusetts.,4 Tufts Clinical and Translational Science Institute (CTSI) , Boston, Massachusetts
| |
Collapse
|
7
|
Choi SC, Lee H, Choi JH, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS One 2015; 10:e0117410. [PMID: 25629977 PMCID: PMC4309530 DOI: 10.1371/journal.pone.0117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023] Open
Abstract
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyunjoo Lee
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Ji-Hyun Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyung-Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jae-Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon-Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Cheol-Woong Yu
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|