1
|
Mairaville C, Broyon M, Maurel M, Chentouf M, Chiavarina B, Turtoi A, Pirot N, Martineau P. Identification of monoclonal antibodies from naive antibody phage-display libraries for protein detection in formalin-fixed paraffin-embedded tissues. J Immunol Methods 2024; 532:113730. [PMID: 39059744 DOI: 10.1016/j.jim.2024.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively. Using these pseudo-tissues and previously described approaches based on differential panning, we isolated very efficient antibody clones, but not against HER2. To optimize HER2 targeting and tissue specificity, we first performed 3-4 rounds of in vitro panning using recombinant HER2 extracellular domain (ECD) to enrich the phage library in HER2 binders, followed by one panning round using the two FFPE pseudo-tissues to retain binders for IHC conditions. We then analyzed the bound phages using next-generation sequencing to identify antibody sequences specifically associated with the HER2-positive pseudo-tissue. Using this approach, the top-ranked clone identified by sequencing was specific to the HER2-positive pseudo-tissue and showed a staining pattern similar to that of the antibody used for the clinical diagnosis of HER2-positive breast cancer. However, we could not optimize staining on other tissues, showing that specificity was restricted to the tissue used for selection and screening. Therefore, future optimized protocols must consider tissue diversity early during the selection by panning using a wide collection of tissue types.
Collapse
Affiliation(s)
| | - Morgane Broyon
- BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Margaux Maurel
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | | | | | - Andrei Turtoi
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France
| | - Nelly Pirot
- IRCM, Univ. Montpellier, ICM, INSERM, Montpellier, France; BCM, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
2
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
3
|
Antibody Identification for Antigen Detection in Formalin-Fixed Paraffin-Embedded Tissue Using Phage Display and Naïve Libraries. Antibodies (Basel) 2021; 10:antib10010004. [PMID: 33466676 PMCID: PMC7839037 DOI: 10.3390/antib10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Immunohistochemistry is a widely used technique for research and diagnostic purposes that relies on the recognition by antibodies of antigens expressed in tissues. However, tissue processing and particularly formalin fixation affect the conformation of these antigens through the formation of methylene bridges. Although antigen retrieval techniques can partially restore antigen immunoreactivity, it is difficult to identify antibodies that can recognize their target especially in formalin-fixed paraffin-embedded tissues. Most of the antibodies currently used in immunohistochemistry have been obtained by animal immunization; however, in vitro display techniques represent alternative strategies that have not been fully explored yet. This review provides an overview of phage display-based antibody selections using naïve antibody libraries on various supports (fixed cells, dissociated tissues, tissue fragments, and tissue sections) that have led to the identification of antibodies suitable for immunohistochemistry.
Collapse
|
4
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Lim CC, Woo PCY, Lim TS. Development of a Phage Display Panning Strategy Utilizing Crude Antigens: Isolation of MERS-CoV Nucleoprotein human antibodies. Sci Rep 2019; 9:6088. [PMID: 30988390 PMCID: PMC6465254 DOI: 10.1038/s41598-019-42628-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Antibody phage display has been pivotal in the quest to generate human monoclonal antibodies for biomedical and research applications. Target antigen preparation is a main bottleneck associated with the panning process. This includes production complexity, downstream purification, quality and yield. In many instances, purified antigens are preferred for panning but this may not be possible for certain difficult target antigens. Here, we describe an improved procedure of affinity selection against crude or non-purified antigen by saturation of non-binders with blocking agents to promote positive binder enrichment termed as Yin-Yang panning. A naïve human scFv library with kappa light chain repertoire with a library size of 109 was developed. The improved Yin-Yang biopanning process was able to enrich monoclonal antibodies specific to the MERS-CoV nucleoprotein. Three unique monoclonal antibodies were isolated in the process. The Yin-Yang biopanning method highlights the possibility of utilizing crude antigens for the isolation of monoclonal antibodies by phage display.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Lykkemark S, Mandrup OA, Jensen MB, Just J, Kristensen P. A novel excision selection method for isolation of antibodies binding antigens expressed specifically by rare cells in tissue sections. Nucleic Acids Res 2017; 45:e107. [PMID: 28369551 PMCID: PMC5499801 DOI: 10.1093/nar/gkx207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
There is a growing appreciation of single cell technologies to provide increased biological insight and allow development of improved therapeutics. The central dogma explains why single cell technologies is further advanced in studies targeting nucleic acids compared to proteins, as nucleic acid amplification makes experimental detection possible. Here we describe a novel method for single round phage display selection of antibody fragments from genetic libraries targeting antigens expressed by rare cells in tissue sections. We present and discuss the results of two selections of antibodies recognizing antigens expressed by perivascular cells surrounding capillaries located in a human brain section; with the aim of identifying biomarkers expressed by pericytes. The area targeted for selection was identified by a known biomarker and morphological appearance, however in situ hybridizations to nucleic acids can also be used for the identification of target cells. The antibody selections were performed directly on the tissue sections followed by excision of the target cells using a glass capillary attached to micromanipulation equipment. Antibodies bound to the target cells were characterized using ELISA, immunocytochemistry and immunohistochemistry. The described method will provide a valuable tool for the discovery of novel biomarkers on rare cells in all types of tissues.
Collapse
Affiliation(s)
- Simon Lykkemark
- Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.,Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, 8000 Aarhus C, Denmark
| | - Ole Aalund Mandrup
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mads Bjørnkjær Jensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jesper Just
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
9
|
Just J, Lykkemark S, Nielsen CH, Roshenas AR, Drasbek KR, Petersen SV, Bek T, Kristensen P. Pericyte modulation by a functional antibody obtained by a novel single-cell selection strategy. Microcirculation 2017; 24. [DOI: 10.1111/micc.12365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Jesper Just
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C Denmark
- Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - Simon Lykkemark
- Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
- Sino-Danish Centre for Education and Research (SDC); Aarhus C Denmark
| | - Charlotte H. Nielsen
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus C Denmark
| | - Ali R. Roshenas
- Department of Engineering; Aarhus University; Aarhus C Denmark
| | - Kim R. Drasbek
- Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | | | - Toke Bek
- Department of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | | |
Collapse
|
10
|
Sørensen KMJ, Meldgaard T, Melchjorsen CJ, Fridriksdottir AJ, Pedersen H, Petersen OW, Kristensen P. Upregulation of Mrps18a in breast cancer identified by selecting phage antibody libraries on breast tissue sections. BMC Cancer 2017; 17:19. [PMID: 28056857 PMCID: PMC5376696 DOI: 10.1186/s12885-016-2987-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/09/2016] [Indexed: 12/04/2022] Open
Abstract
Background One of the hallmarks of cancer is an altered energy metabolism, and here, mitochondria play a central role. Previous studies have indicated that some mitochondrial ribosomal proteins change their expression patterns upon transformation. Method In this study, we have used the selection of recombinant antibody libraries displayed on the surface of filamentous bacteriophage as a proteomics discovery tool for the identification of breast cancer biomarkers. A small subpopulation of breast cells expressing both cytokeratin 19 and cytokeratin 14 was targeted using a novel selection procedure. Results We identified the mitochondrial ribosomal protein s18a (Mrps18a) as a protein which is upregulated in breast cancer. However, Mrps18a was not homogeneously upregulated in all cancer cells, suggesting the existence of sub-populations within the tumor. The upregulation was not confined to cytokeratin 19 and cytokeratin 14 double positive cells. Conclusion This study illustrates how phage display can be applied towards the discovery of proteins which exhibit changes in their expression patterns. We identified the mitochondrial protein Mrps18a as being upregulated in human breast cancer cells compared to normal breast cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2987-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Theresa Meldgaard
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark
| | | | - Agla J Fridriksdottir
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Pedersen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, Centre for Biological Disease Analysis and Danish Stem Cell Centre, University of Copenhagen, Copenhagen, Denmark
| | - Peter Kristensen
- Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Aarhus, Denmark.
| |
Collapse
|
11
|
ten Haaf A, Pscherer S, Fries K, Barth S, Gattenlöhner S, Tur MK. Phage display-based on-slide selection of tumor-specific antibodies on formalin-fixed paraffin-embedded human tissue biopsies. Immunol Lett 2015; 166:65-78. [DOI: 10.1016/j.imlet.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/24/2022]
|
12
|
Larsen SA, Meldgaard T, Lykkemark S, Mandrup OA, Kristensen P. Selection of cell-type specific antibodies on tissue-sections using phage display. J Cell Mol Med 2015; 19:1939-48. [PMID: 25808085 PMCID: PMC4549044 DOI: 10.1111/jcmm.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
With the advent of modern technologies enabling single cell analysis, it has become clear that small sub-populations of cells or even single cells can drive the phenotypic appearance of tissue, both diseased and normal. Nucleic acid based technologies allowing single cell analysis has been faster to mature, while technologies aimed at analysing the proteome at a single cell level is still lacking behind, especially technologies which allow single cell analysis in tissue. Introducing methods, that allows such analysis, will pave the way for discovering new biomarkers with more clinical relevance, as these may be unique for microenvironments only present in tissue and will avoid artifacts introduced by in vitro studies. Here, we introduce a technology enabling biomarker identification on small sub-populations of cells within a tissue section. Phage antibody libraries are applied to the tissue sections, followed by washing to remove non-bound phage particles. To eliminate phage antibodies binding to antigens ubiquitously expressed and retrieve phage antibodies binding specifically to antigens expressed by the sub-population of cells, the area of interest is protected by a ‘shadow stick’. The phage antibodies on the remaining areas on the slide are exposed to UV light, which introduces cross-links in the phage genome, thus rendering them non-replicable. In this work we applied the technology, guided by CD31 expressing endothelial cells, to isolate recombinant antibodies specifically binding biomarkers expressed either by the cell or in the microenvironment surrounding the endothelial cell.
Collapse
Affiliation(s)
- Simon Asbjørn Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simon Lykkemark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Sino-Danish Centre for Education and Research (SDC), Aarhus, Denmark
| | | | | |
Collapse
|
13
|
Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends Biotechnol 2015; 33:292-301. [PMID: 25819764 DOI: 10.1016/j.tibtech.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
Antibody-based drugs represent one of the most successful and promising therapeutic approaches in oncology. Large combinatorial phage antibody libraries are available for the identification of therapeutic antibodies and various technologies exist for their further conversion into multivalent and multispecific formats optimized for the desired pharmacokinetics and the pathological context. However, there is no technology for antigen profiling of intact tumors to identify tumor markers targetable with antibodies. Such constraints have led to a relative paucity of tumor-associated antigens for antibody targeting in oncology. Here we review novel approaches aimed at the identification of antibody-targetable, accessible antigens in intact tumors. We hope that such advanced selection approaches will be useful in the development of next-generation antibody therapies for cancer.
Collapse
|
14
|
Genetic methods of antibody generation and their use in immunohistochemistry. Methods 2014; 70:20-7. [DOI: 10.1016/j.ymeth.2014.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/22/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
|
15
|
Close DW, Ferrara F, Dichosa AEK, Kumar S, Daughton AR, Daligault HE, Reitenga KG, Velappan N, Sanchez TC, Iyer S, Kiss C, Han CS, Bradbury ARM. Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes. BMC Microbiol 2013; 13:270. [PMID: 24279426 PMCID: PMC3907030 DOI: 10.1186/1471-2180-13-270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes. METHODS We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS). Single chain (scFv) antibodies are selected using phage display against a bacteria or microbial community, resulting in species-specific antibodies that can be used in FACS for relative quantification of an organism in a community, as well as enrichment or depletion prior to genome sequencing. RESULTS We selected antibodies against Lactobacillus acidophilus and demonstrate a FACS-based approach for identification and enrichment of the organism from both laboratory-cultured and commercially derived bacterial mixtures. The ability to selectively enrich for L. acidophilus when it is present at a very low abundance (<0.2%) leads to complete (>99.8%) de novo genome coverage whereas the standard single-cell sequencing approach is incomplete (<68%). We show that specific antibodies can be selected against L. acidophilus when the monoculture is used as antigen as well as when a community of 10 closely related species is used demonstrating that in principal antibodies can be generated against individual organisms within microbial communities. CONCLUSIONS The approach presented here demonstrates that phage-selected antibodies against bacteria enable identification, enrichment of rare species, and depletion of abundant organisms making it tractable to virtually any microbe or microbial community. Combining antibody specificity with FACS provides a new approach for characterizing and manipulating microbial communities prior to genome sequencing.
Collapse
Affiliation(s)
- Devin W Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sørensen MD, Melchjorsen CJ, Mandrup OA, Kristensen P. Raising antibodies against circulating foetal cells from maternal peripheral blood. Prenat Diagn 2013; 33:284-91. [PMID: 23390071 DOI: 10.1002/pd.4060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cells of foetal origin circulating in the maternal peripheral bloodstream present a unique source for non-invasive prenatal diagnostics. The aims of this study were to raise antibodies against identified circulating foetal cells from the maternal blood, test the properties of these antibodies and to determine the foetal cell type recognised by the antibodies. METHOD Cells from a male foetus were identified in a maternal blood sample by FISH analysis of the X- and Y- chromosomes. The identified cells were subjected to phage display selection using a novel single cell selection strategy. Selected antibodies were tested by immunocytochemistry on foetal and adult tissue arrays, an endothelial cell line, and peripheral blood mononuclear cells. RESULTS Three identified foetal cells subjected to antibody selection, yielded a total of 12 antibodies. Three antibodies gave distinct staining patterns on tissue arrays, and endothelial cells. One antibody, SF1.3, shows specific staining of a subpopulation of peripheral blood mononuclear cells, including a fraction of CD34 positive cells. CONCLUSION These findings indicate that the identified foetal cells could have been progenitor cells of haematopoietic origin. The antibody SF1.3 could be a potential tool toward non-invasive prenatal diagnostics.
Collapse
|
17
|
Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods 2012; 57:486-98. [PMID: 22750306 DOI: 10.1016/j.ymeth.2012.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023] Open
Abstract
The last 100 years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.
Collapse
Affiliation(s)
- S Miersch
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
18
|
Selection of antibodies against a single rare cell present in a heterogeneous population using phage display. Nat Protoc 2011; 6:509-22. [PMID: 21455187 DOI: 10.1038/nprot.2011.311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here we describe a new method applying phage-displayed antibody libraries to the selection of antibodies against a single identified cell on a glass slide. This is the only described method that has successfully achieved selection of antibodies against a single rare cell in a heterogeneous population of cells. The phage library is incubated with the slide containing the identified rare cell of interest; incubation is followed by UV irradiation while protecting the target cell with a minute disc. The UV light inactivates all phages outside the shielded area by cross-linking the DNA constituting their genomes. The expected yield is between one and ten phage particles from a single cell selection. The encoded antibodies are subsequently produced monoclonally and tested for specificity. This method can be applied within a week to carry out ten or more individual cell selections. Including subsequent testing of antibody specificity, a specific antibody can be identified within 2 months.
Collapse
|