1
|
Roma D, Cecchini ME, Tonini MP, Capella V, Aiassa D, Rodriguez N, Mañas F. Toxicity assessment and DNA repair kinetics in HEK293 cells exposed to environmentally relevant concentrations of Glyphosate (Roundup® Control Max). Toxicol Res (Camb) 2023; 12:970-978. [PMID: 37915486 PMCID: PMC10615827 DOI: 10.1093/toxres/tfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Glyphosate is a systemic, non-selective, pre and post-emergence wide range herbicide. In 2015, IARC classified Glyphosate as "a probable carcinogenic agent for humans". The aim of this study was to evaluate the cytotoxicity and genotoxicity of the commercial formulation of glyphosate (Roundup® Control Max) at environmentally relevant concentrations and measure the potential effect of this herbicide over the cell capacity to repair DNA damage. HEK293 cells were exposed to 5 concentrations of Roundup® Control Max equivalent to 0.7; 7; 70; 700 and 3,500 μg/L glyphosate acid, for 1, 4 and 24 h. Cytotoxicity was quantified by the Trypan Blue staining method and by the MTT assay, while genotoxicity and evaluation of DNA damage repair kinetics were analyzed through the alkaline comet assay. In all treatments, cell viability was higher than 80%. The three highest glyphosate concentrations-70 μg/L, 700 μg/L, and 3,500 μg/L-increased levels of DNA damage compared to the control at the three exposure times tested. Finally, concerning the kinetics of DNA damage repair, cells initially exposed to 3,500 μg/L of glyphosate for 24 h were unable to repair the breaks in DNA strands even after 4 h of incubation in culture medium. The present study demonstrated for the first time that Roundup® Control Max may induce genetic damage and cause alterations in the DNA repair system in human embryonic kidney cells even at concentrations found in blood and breast milk of people exposed through residues of the herbicide in food, which values have been poorly assessed or not studied yet according to the existent literature.
Collapse
Affiliation(s)
- Dardo Roma
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Maria Eugenia Cecchini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - María Paula Tonini
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Virginia Capella
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Delia Aiassa
- Department of Natural Sciences, National University of Río Cuarto, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Nancy Rodriguez
- Department of Molecular Biology, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| | - Fernando Mañas
- Department of Animal Clinic, National University of Río Cuarto-CONICET, National Route No. 36, 601 Km, Rio Cuarto X5804ZAB, Argentina
| |
Collapse
|
2
|
Narayan P, Bruce AT, Rivera EA, Bertram TA, Jain D. Selected renal cells harbor nephrogenic potential. Front Med (Lausanne) 2022; 9:1062890. [PMID: 36619635 PMCID: PMC9815697 DOI: 10.3389/fmed.2022.1062890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Selected renal cells (SRCs), a renal epithelial cell-enriched platform, are being advanced as an autologous cell-based therapy for the treatment of chronic kidney disease. However, the mechanism underlying its renal reparative and restorative effects remains to be fully elucidated. In this study, we coupled knowledgebase data with empirical findings to demonstrate that genes differentially expressed by SRCs form interactomes within tubules and glomeruli and mediate a suite of renal developmental activities including epithelial cell differentiation, renal vasculature development, and glomerular and nephron development. In culture, SRCs form organoids which self-assemble into tubules in the presence of a scaffold. Implanted into the kidneys of subtotally nephrectomized rats, SRCs are associated with comma- and S-shaped body cell formation and glomerular development, and improvement in renal filtration indices and renal microarchitecture. These data suggest that SRCs harbor nephrogenic potential, which may explain, at least in part, their therapeutic activity.
Collapse
|
3
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
4
|
Shiva N, Sharma N, Kulkarni YA, Mulay SR, Gaikwad AB. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models. Life Sci 2020; 256:117860. [PMID: 32534037 DOI: 10.1016/j.lfs.2020.117860] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.
Collapse
Affiliation(s)
- Niharika Shiva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
5
|
Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C. Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 2017; 57:59-69. [PMID: 28526628 DOI: 10.1016/j.actbio.2017.05.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/01/2022]
Abstract
Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. STATEMENT OF SIGNIFICANCE The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug toxicity platform, a chemotherapy drug was incubated with the model, resulting in a drug response similar to human clinical pathology. The established model could have wide applications in the field of nephrotoxicity and renal regenerative medicine and offer a reliable alternative to animal models.
Collapse
Affiliation(s)
- Heather M Weber
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Valentina Magno
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
6
|
Belair DG, Abbott BD. Engineering epithelial-stromal interactions in vitro for toxicology assessment. Toxicology 2017; 382:93-107. [PMID: 28285100 DOI: 10.1016/j.tox.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues.
Collapse
Affiliation(s)
- David G Belair
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States.
| | - Barbara D Abbott
- US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Developmental Toxicology Branch, Research Triangle Park, NC 27711, United States
| |
Collapse
|
7
|
Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA. Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Sci Rep 2016; 6:34845. [PMID: 27725720 PMCID: PMC5057112 DOI: 10.1038/srep34845] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023] Open
Abstract
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.
Collapse
Affiliation(s)
- Kimberly A. Homan
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - David B. Kolesky
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Mark A. Skylar-Scott
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jessica Herrmann
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Humphrey Obuobi
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| | - Annie Moisan
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Jennifer A. Lewis
- School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci Rep 2015. [PMID: 26212763 PMCID: PMC4515747 DOI: 10.1038/srep12337] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The renal proximal tubule is a main target for drug-induced toxicity. The prediction of proximal tubular toxicity during drug development remains difficult. Any in vitro methods based on induced pluripotent stem cell-derived renal cells had not been developed, so far. Here, we developed a rapid 1-step protocol for the differentiation of human induced pluripotent stem cells (hiPSC) into proximal tubular-like cells. These proximal tubular-like cells had a purity of >90% after 8 days of differentiation and could be directly applied for compound screening. The nephrotoxicity prediction performance of the cells was determined by evaluating their responses to 30 compounds. The results were automatically determined using a machine learning algorithm called random forest. In this way, proximal tubular toxicity in humans could be predicted with 99.8% training accuracy and 87.0% test accuracy. Further, we studied the underlying mechanisms of injury and drug-induced cellular pathways in these hiPSC-derived renal cells, and the results were in agreement with human and animal data. Our methods will enable the development of personalized or disease-specific hiPSC-based renal in vitro models for compound screening and nephrotoxicity prediction.
Collapse
|
9
|
Nowacki M, Kloskowski T, Pokrywczyńska M, Nazarewski Ł, Jundziłł A, Pietkun K, Tyloch D, Rasmus M, Warda K, Habib SL, Drewa T. Is regenerative medicine a new hope for kidney replacement? J Artif Organs 2014; 17:123-34. [DOI: 10.1007/s10047-014-0767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
|
10
|
Tiong HY, Huang P, Xiong S, Li Y, Vathsala A, Zink D. Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm 2014; 11:1933-48. [PMID: 24502545 DOI: 10.1021/mp400720w] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The kidney is a major target for drug-induced toxicity. Drug-induced nephrotoxicity remains a major problem in the clinical setting, where the use of nephrotoxic drugs is often unavoidable. This leads frequently to acute kidney injury, and current problems are discussed. One strategy to avoid such problems would be the development of drugs with decreased nephrotoxic potential. However, the prediction of nephrotoxicity during preclinical drug development is difficult and nephrotoxicity is typically detected only late. Also, the nephrotoxic potential of newly approved drugs is often underestimated. Regulatory approved or validated in vitro models for the prediction of nephrotoxicity are currently not available. Here, we will review current approaches on the development of such models. This includes a discussion of three-dimensional and microfluidic models and recently developed stem cell based approaches. Most in vitro models have been tested with a limited number of compounds and are of unclear predictivity. However, some studies have tested larger numbers of compounds and the predictivity of the respective in vitro model had been determined. The results showed that high predictivity can be obtained by using primary or stem cell derived human renal cells in combination with appropriate end points.
Collapse
Affiliation(s)
- Ho Yee Tiong
- Yong Loo Lin School of Medicine, National University Health System , 1E Kent Ridge Road, NUHS Tower Block, Singapore 119228, Singapore
| | | | | | | | | | | |
Collapse
|
11
|
Li Y, Kandasamy K, Chuah JKC, Lam YN, Toh WS, Oo ZY, Zink D. Identification of Nephrotoxic Compounds with Embryonic Stem-Cell-Derived Human Renal Proximal Tubular-Like Cells. Mol Pharm 2014; 11:1982-90. [DOI: 10.1021/mp400637s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yao Li
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Karthikeyan Kandasamy
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jacqueline Kai Chin Chuah
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Yue Ning Lam
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Wei Seong Toh
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Zay Yar Oo
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Daniele Zink
- Institute of Bioengineering
and Nanotechnology, 31
Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
12
|
Kathawala MH, Xiong S, Richards M, Ng KW, George S, Loo SCJ. Emerging in vitro models for safety screening of high-volume production nanomaterials under environmentally relevant exposure conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1504-1520. [PMID: 23019115 DOI: 10.1002/smll.201201452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 06/01/2023]
Abstract
The rising production of nanomaterial-based consumer products has raised safety concerns. Testing these with animal and other direct models is neither ethically nor economically viable, nor quick enough. This review aims to discuss the strength of in vitro testing, including the use of 2D and 3D cultures, stem cells, and tissue constructs, etc., which would give fast and repeatable answers of a highly specific nature, while remaining relevant to in vivo outcomes. These results can then be combined and the overall toxicity predicted with relative accuracy. Such in vitro models can screen potentially toxic nanomaterials which, if required, can undergo further stringent studies in animals. The cyto- and phototoxicity of some high-volume production nanomaterials, using in vitro models, is also reviewed.
Collapse
Affiliation(s)
- Mustafa Hussain Kathawala
- Nanyang Technological University, School of Materials Science and Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
13
|
Oo ZY, Kandasamy K, Tasnim F, Zink D. A novel design of bioartificial kidneys with improved cell performance and haemocompatibility. J Cell Mol Med 2013; 17:497-507. [PMID: 23480720 PMCID: PMC3822650 DOI: 10.1111/jcmm.12029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/28/2012] [Indexed: 12/12/2022] Open
Abstract
Treatment with bioartificial kidneys had beneficial effects in animal experiments and improved survival of critically ill patients with acute kidney injury in a Phase II clinical trial. However, a Phase II b clinical trial failed. This and other results suggested various problems with the current design of bioartificial kidneys. We propose a novel design to improve various properties of device, including haemocompatibility and cell performance. An important feature of the novel design is confinement of the blood to the lumina of the hollow fibre membranes. This avoids exposure of the blood to the non-haemocompatible outer surfaces of hollow fibre membranes, which usually occurs in bioartificial kidneys. We use these outer surfaces as substrate for cell growth. Our results show that commercial hollow fibre membranes can be directly applied in the bioreactor when human primary renal proximal tubular cells are grown in this configuration, and no coatings are required for the formation of robust and functional renal epithelia. Furthermore, we demonstrate that the bioreactor unit produces significant amounts of interleukins. This result helps to understand the immunomodulatory effects of bioartificial kidneys, which have been observed previously. The novel bioartificial kidney design outlined here and the results obtained would be expected to improve the safety and performance of bioartificial kidneys and to contribute to a better understanding of their effects.
Collapse
Affiliation(s)
- Zay Yar Oo
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore 138669, Singapore
| | | | | | | |
Collapse
|
14
|
Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int 2013; 83:593-603. [PMID: 23389418 DOI: 10.1038/ki.2012.442] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.
Collapse
|
15
|
|
16
|
Tasnim F, Zink D. Cross talk between primary human renal tubular cells and endothelial cells in cocultures. Am J Physiol Renal Physiol 2012; 302:F1055-62. [DOI: 10.1152/ajprenal.00621.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, The Nanos, Singapore
| |
Collapse
|
17
|
Tasnim F, Kandasamy K, Muck JS, bin Ibrahim MS, Ying JY, Zink D. Effects of Bone Morphogenetic Proteins on Primary Human Renal Cells and the Generation of Bone Morphogenetic Protein-7-Expressing Cells for Application in Bioartificial Kidneys. Tissue Eng Part A 2012; 18:262-76. [DOI: 10.1089/ten.tea.2011.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Joscha S. Muck
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | | | - Jackie Y. Ying
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
| |
Collapse
|
18
|
Zhang WJ, Lin QX, Zhang Y, Liu CT, Qiu LY, Wang HB, Wang YM, Duan CM, Liu ZQ, Zhou J, Wang CY. The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J Cell Mol Med 2012; 15:1878-86. [PMID: 21029367 PMCID: PMC3918044 DOI: 10.1111/j.1582-4934.2010.01189.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study attempted to use collagen–Matrigel as extracellular matrix (ECM) to supply cells with three-dimensional (3D) culture condition and employ alginate-poly-l-lysine-alginate (APA) microcapsules to control the formation of alveolus-like structure in vitro. We tested mice foetal pulmonary cells (FPCs) by immunohistochemistry after 2D culture. The alveolus-like structure was reconstructed by seeding FPCs in collagen–Matrigel mixed with APA microcapsules 1.5 ml. A self-made mould was used to keep the structure from contraction. Meanwhile, it provided static stretch to the structure. After 7, 14 and 21 days of culture, the alveolus-like structure was analysed histologically and immunohistochemically, or by scanning transmission electron microscopy (TEM). We also observed these structures under inverted phase contrast microscope. The expression of pro-surfactant protein C (SpC) was detected by reverse transcription-polymerase chain reaction (RT-PCR). We obtained fibroblasts, epithelial cells and alveolar type II (AE2) cells in FPCs. In the reconstructed structure, seeding cells surrounding the APA microcapsules constructed alveolus-like structures, the size of them ranges from 200 to 300 μm. In each reconstructed lung tissue sheet, microcapsules had integrity. Pan-cytokeratin, vimentin and SpC positive cells were observed in 7- and 14-day cultured structures. TEM showed lamellar bodies of AE2 cells in the reconstructed tissues whereas RT-PCR expressed SpC gene. Primary mice FPCs could form alveolus-like structures in collagen–Matrigel/APA microcapsules engineered scaffolds, which could maintain a differentiated state of AE2 cells.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Tissue Engineering, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ni M, Zimmermann PK, Kandasamy K, Lai W, Li Y, Leong MF, Wan AC, Zink D. The use of a library of industrial materials to determine the nature of substrate-dependent performance of primary adherent human cells. Biomaterials 2012; 33:353-64. [DOI: 10.1016/j.biomaterials.2011.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/23/2011] [Indexed: 12/30/2022]
|
20
|
The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials 2011; 32:8806-15. [PMID: 21872923 DOI: 10.1016/j.biomaterials.2011.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/10/2011] [Indexed: 01/24/2023]
Abstract
Bioartificial kidneys (BAKs) containing human primary renal proximal tubule cells (HPTCs) have been applied in clinical trials. The results were encouraging, but also showed that more research is required. Animal cells or cell lines are not suitable for clinical applications, but have been mainly used in studies on BAK development as large numbers of such cells could be easily obtained. It is difficult to predict HPTC performance based on data obtained with other cell types. To enable more extensive studies on HPTCs, we have developed a bioreactor containing single hollow fiber membranes that requires relatively small amounts of cells. Special hollow fiber membranes with the skin layer on the outer surface and consisting of polyethersulfone/polyvinylpyrrolidone were developed. The results suggested that such hollow fiber membranes were more suitable for the bioreactor unit of BAKs than membranes with an inner skin layer. An HPTC-compatible double coating was applied to the insides of the hollow fiber membranes, which sustained the formation of functional epithelia under bioreactor conditions. Nevertheless, the state of differentiation of the primary human cells remained a critical issue and should be further addressed. The bioreactor system described here will facilitate further studies on the relevant human cell type.
Collapse
|
21
|
Polykandriotis E, Popescu LM, Horch RE. Regenerative medicine: then and now--an update of recent history into future possibilities. J Cell Mol Med 2011; 14:2350-8. [PMID: 20825521 PMCID: PMC3823153 DOI: 10.1111/j.1582-4934.2010.01169.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The fields of tissue engineering (TE) and regenerative medicine (RegMed) are yet to bring about the anticipated therapeutic revolution. After two decades of extremely high expectations and often disappointing returns both in the medical as well as in the financial arena, this scientific field reflects the sense of a new era and suggests the feeling of making a fresh start although many scientists are probably seeking reorientation. Much of research was industry driven, so that especially in the aftermath of the recent financial meltdown in the last 2 years we have witnessed a biotech asset yard sale. Despite any monetary shortcomings, from a technological point of view there have been great leaps that are yet to find their way to the patient. RegMed is definitely bound to play a major role in our life because it embodies one of the primordial dreams of mankind, such as: everlasting youth, flying, remote communication and setting foot on the moon. The Journal of Cellular and Molecular Medicine has been at the frontier of these developments in TE and RegMed from its beginning and reflects recent scientific advances in both fields. Therefore this review tries to look at RegMed through the keyhole of history which might just be like looking ‘back to the future’.
Collapse
Affiliation(s)
- E Polykandriotis
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University of Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
22
|
Tasnim F, Deng R, Hu M, Liour S, Li Y, Ni M, Ying JY, Zink D. Achievements and challenges in bioartificial kidney development. FIBROGENESIS & TISSUE REPAIR 2010; 3:14. [PMID: 20698955 PMCID: PMC2925816 DOI: 10.1186/1755-1536-3-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/10/2010] [Indexed: 12/23/2022]
Abstract
Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
Collapse
Affiliation(s)
- Farah Tasnim
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|