1
|
Huang R, Zheng Z, Liu S, Yan P, Song D, Yin H, Hu P, Zhu X, Chang Z, Liu Y, Zhuang J, Meng T, Huang Z, Zhang J. Identification of prognostic and bone metastasis-related alternative splicing signatures in mesothelioma. Cancer Med 2021; 10:4478-4492. [PMID: 34041868 PMCID: PMC8267146 DOI: 10.1002/cam4.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Mesothelioma (MESO) is an infrequent tumor derived from mesothelial cells of pleura, peritoneum, pericardium, and tunica vaginalis testis. Despite advancement in technologies and better understanding of tumor progression mechanism, the prognosis of MESO remains poor. The role of alternative splicing events (ASEs) in the oncogenesis, tumor metastasis and drug resistance has been widely discussed in multiple cancers. But the prognosis and potential therapeutic value of ASEs in MESO were not clearly studied by now. We constructed a prognostic model using RNA sequencing data and matched ASE data of MESO patients obtained from the TCGA and TCGASpliceSeq database. A total of 3,993 ASEs were identified associated with overall survival using Cox regression analysis. Eight of them were finally figured out to institute the model by lasso regression analysis. The risk score of the model can predict the prognosis independently. Among the identified 390 splicing factors (SF), HSPA1A and DDX3Y was significantly associated with 43 OS-SEs. Among these OS-SEs, SNX5-58744-AT (p = 0.048) and SNX5-58745-AT (p = 0.048) were significantly associated with bone metastasis. Co-expression analysis of signal pathways and SNX5-58744-AT, SNX5-58745-AT was also depicted using GSVA. Finally, we proposed that splicing factor (SF) HSPA1A could regulate SNX5-58744-AT (R = -0.414) and SNX5-58745-AT (R = 0.414) through the pathway "Class I MHC mediated antigen processing and presentation" (R = 0.400). In this way, tumorigenesis and bone metastasis of MESO were controlled.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Sijia Liu
- Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Juanwei Zhuang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cheng C, Feng S, Jiao J, Huang W, Huang J, Wang L, Jiang W, Jiang C, Dai M, Li Z, Zhang R, Sun J, Shao J. DLC2 inhibits development of glioma through regulating the expression ratio of TAp73α/TAp73β. Am J Cancer Res 2018; 8:1200-1213. [PMID: 30094094 PMCID: PMC6079157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023] Open
Abstract
To date, the anti-tumor mechanism of the deleted in liver cancer 2 (DLC2) in gliomas is still unclear. The study shows that TAp73α expression and TAp73α/TAp73β ratio are frequently high in gliomas and that TAp73α and TAp73β have opposite roles in regulating proliferation and apoptosis of glioma cells. Moreover, DLC2 is low-expressed in gliomas, which negatively correlates with TAp73α expression and TAp73α/TAp73β ratio. More importantly, DLC2 inhibits development of glioma by decreasing expression of TAp73α, which changes the expression ratio of TAp73α/TAp73β in glioma cells. Mechanically, DLC2 interacts directly with TAp73α and induces TAp73α ubiquitination and degradation, which is mediated through SAM domain of DLC2 and TAp73α. In detail, DLC2 with SAM domain deletion fails to interact with TAp73α and induce TAp73α ubiquitination and degradation, and SAM deletion decreased tumorigenesis-inhibition effect of DLC2. In conclusion, DLC2 inhibits glioma development by inducing TAp73α degradation and subsequent change of TAp73α/TAp73β expression ratio.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Suyin Feng
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Long Wang
- Department of Neurosurgery, Peace Hospital of Changzhi Medical CollegeChangzhi 046000, Shanxi, China
| | - Wei Jiang
- Department of Neurosurgery, Changzhou Wujin People’s Hospital of Jiangsu UniversityChangzhou 213100, Jiangsu, China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Minchao Dai
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Zheng Li
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| |
Collapse
|
3
|
Corrigendum. J Cell Mol Med 2017; 21:418. [PMID: 28121075 PMCID: PMC5264146 DOI: 10.1111/jcmm.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Rodhe J, Kavanagh E, Joseph B. TAp73β-mediated suppression of cell migration requires p57Kip2 control of actin cytoskeleton dynamics. Oncotarget 2014; 4:289-97. [PMID: 23470527 PMCID: PMC3712574 DOI: 10.18632/oncotarget.833] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The TP73 gene, a member of the p53 family, due to the use of different promoters and alternative splicing, is transcribed into different isoforms with contrasting attributes and which contribute to its functional diversity. Considerable efforts are made to identify the functional diversity of the p73 splicing variants during tumorigenesis.TAp73α and TAp73β isoforms have been shown to differentially regulate cell cycle progression, differentiation and apoptosis. Interestingly, a particular increase in expression of the TAp73 isoform, in favor of the α splicing variant, has been reported in multiple tumour types. Here, we report a distinctive role for TAp73β isoform in the control of cell migration and invasion. In fact, TAp73β-dependent induction of p57Kip2 expression accounted for inhibitory effects on the actin cytoskeleton dynamics and thereby cancer cell motility. In contrast, TAp73α is not able to induce p57Kip2 expression, and exhibits a positive effect on actin cytoskeleton dynamics as well as cell migration and invasion. In conclusion, the inhibitory effect on cell migration and invasion of TAp73β would qualify this distinct p73 isoform as tumor suppressor gene. In contrast, the promoting effect of TAp73α on cell motility and invasion strengthens the potential oncogenic activities of this p73 isoform.
Collapse
Affiliation(s)
- Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
5
|
D’Alessandro A, Marrocco C, Rinalducci S, Peschiaroli A, Timperio AM, Bongiorno-Borbone L, Finazzi Agrò A, Melino G, Zolla L. Analysis of TAp73-Dependent Signaling via Omics Technologies. J Proteome Res 2013; 12:4207-20. [DOI: 10.1021/pr4005508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Angelo D’Alessandro
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Cristina Marrocco
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | | | - Anna Maria Timperio
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| | - Lucilla Bongiorno-Borbone
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Alessandro Finazzi Agrò
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine
and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Medical Research Council, Toxicology
Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester LE1 9HN, U.K
| | - Lello Zolla
- Department of Ecological and
Biological Sciences, University of Tuscia, Largo dell’Università, snc, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Muppani N, Nyman U, Joseph B. TAp73alpha protects small cell lung carcinoma cells from caspase-2 induced mitochondrial mediated apoptotic cell death. Oncotarget 2012; 2:1145-54. [PMID: 22201672 PMCID: PMC3282073 DOI: 10.18632/oncotarget.391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Caspase-2 is ubiquitously expressed and the most evolutionarily conserved mammalian caspase. It can be activated by a range of death stimuli prior to Bax activation and the occurrence of apoptotic mitochondrial dysfunctions. Caspase-2 has also been reported to exert tumour suppressor function in vivo. The full length TAp73alpha isoform is found up-regulated in various tumour types, and is reported in a cell-type specific manner to repress drug-induced apoptosis. Here, we report that TAp73alpha represses caspase-2 enzymatic activity and by this means reduce caspase-2 induced Bax activation, loss of mitochondrial transmembrane potential and resulting apoptosis. The inhibitory effect on caspase-2 requires the presence of the DNA binding domain and SAM domain region of TAp73alpha. In conclusion, the ability of TAp73alpha to act as an inhibitor of caspase-2-induced cell death together with its up-regulation in certain tumour types strengthen the potential oncogenic activities for this protein.
Collapse
Affiliation(s)
- Naveen Muppani
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|