1
|
Radenkovic G, Petrovic V, Zivanovic D, Stoiljkovic N, Sokolovic D, Zivkovic N, Radenkovic D, Velickov A, Jovanovic J. Interstitial Cells of Cajal and Neural Structures in the Human Fetal Appendix. J Neurogastroenterol Motil 2021; 27:127-133. [PMID: 33380557 PMCID: PMC7786081 DOI: 10.5056/jnm20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background/Aims The interstitial cells of Cajal (ICC) are located within and around the digestive tract's muscle layers. They function as intestinal muscle pacemakers and aid in the modification of enteric neurotransmission. The appendix's unique position requires an appropriate contraction pattern of its muscular wall to adequately evacuate its contents. We investigated the development and distribution of nervous structures and ICC in the human fetal appendix. Methods Specimens were exposed to anti-c-kit (CD117) antibodies to investigate ICC differentiation. Enteric plexuses were examined using anti-neuron-specific enolase, and the differentiation of smooth muscle cells was studied with anti-desmin antibodies. Results During weeks 13-14, numerous myenteric plexus ganglia form an almost uninterrupted sequence throughout the body and apex of the appendix. Fewer ganglia were present at the submucosal border of the circular muscle layer and within this layer. A large number of ganglia appear within the circular and longitudinal muscle layers in a later fetal period. The first ICC subtypes noted were of the myenteric plexus and the submucous plexus. In the later fetal period, the number of intramuscular ICC markedly rises, and this subtype becomes predominant. Conclusions The ICC and nervous structure distribution in the human fetal appendix are significantly different from all other parts of the small and large intestine. The organization of ICC and the enteric nervous system provides the basis for the specific contraction pattern of the muscular wall of the appendix.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | - Vladimir Petrovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | | - Nenad Stoiljkovic
- Department of Physiology, Faculty of Medicine, University of Nis, Serbia
| | - Dusan Sokolovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Faculty of Medicine, University of Nis, Serbia
| | - Dina Radenkovic
- Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | |
Collapse
|
2
|
Ibrahim D, Gaber W, Awad M. Temporospatial localization of telocytes during esophageal morphogenesis in rabbit. Acta Histochem 2019; 121:64-71. [PMID: 30401476 DOI: 10.1016/j.acthis.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Telocytes (TCs) are CD34 and Vimentin positive (+) immunoreactive stromal cells with a small-sized body and several extremely long telopodes. TCs have been described to provide a mechanical support throughout the tissue by making cellular connections (homo- or hetero) to form a 3D network. Such network can transmit the intercellular signaling. Recently, TCs have been described in the esophageal wall. However, information concerning the role of these cells in esophageal organization and development is rare. Thus, we aimed to record the temporo-spatial localization pattern of TCs during esophageal morphogenesis in rabbit. Embryos and fetuses of New Zealand White rabbits (10th-30th gestational days) were collected. Using CD34 immunostaining, TCs have not been demonstrated in the wall of the developing esophagus till the end of the second third of pregnancy. On 24th gestational day, CD34+ TCs were organized in the adventitia of the esophageal wall specifically in close association with the endothelial cells lining the micro vessels. Later on 26th gestational day, CD34+TCs were additionally expressed in the sub-mucosa and in lamina propria (sub-epithelial). On 28th gestational day, additional CD34+TCs were detected among the smooth muscle bundles of the muscular layer. Reaching the last gestational day, CD34+TCs formed several sheaths in the esophageal wall namely sub epithelial sheath, sub-mucosal, muscular (circular and longitudinal) and inter-muscular sheaths and an outer adventitial one. On the other hand, vimentin immunohistochemistry revealed wider spread TCs positivity in all developmental ages. Presumptively, arrangement of CD34 and vimentin positive TCs in all layers of the developing esophageal wall hypothesizes that TC may play a potential role as a progenitor cell initially in differentiation of the epithelial and muscular precursors and finally in shaping of the various layers of the rabbit esophageal wall during its morphogenesis. TCs are also proposed to be involved in the angiogenesis of the esophageal blood capillaries.
Collapse
|
3
|
Liu Z, Zheng G, Liu J, Liu S, Xu G, Wang Q, Guo M, Lian X, Zhang H, Feng F. Clinicopathological features, surgical strategy and prognosis of duodenal gastrointestinal stromal tumors: a series of 300 patients. BMC Cancer 2018; 18:563. [PMID: 29764388 PMCID: PMC5952823 DOI: 10.1186/s12885-018-4485-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The relatively low incidence of duodenal gastrointestinal stromal tumors (GISTs) and the unique anatomy make the surgical management and outcomes of this kind of tumor still under debate. Thus, this study aimed to explore the optimal surgical strategy and prognosis of duodenal GISTs. METHODS A total of 300 cases of duodenal GISTs were obtained from our center (37 cases) and from case reports or series (263 cases) extracted from MEDLINE. Clinicopathological features, type of resections and survivals of duodenal GISTs were analyzed. RESULTS The most common location of duodenal GISTs was descending portion (137/266, 51.5%). The median tumor size was 4 cm (0.1-28). Most patients (66.3%) received limited resection (LR). Pancreaticoduodenectomy (PD) was mainly performed for GISTs with larger tumor size or arose from descending portion (both P < 0.05). For both the entire cohort and tumors located in the descending portion, PD was not an independent risk factor for disease-free survival (DFS) and disease-specific survival (DSS) (both P > 0.05). Duodenal GISTs were significantly different from gastric GISTs with respect to tumor size, mitotic index and NIH risk category (all P < 0.05). The DFS and DSS of duodenal GISTs was significantly worse than that of gastric GISTs (both P < 0.05). CONCLUSIONS LR was a more prevalent surgical procedure and PD was mainly performed for tumors with larger diameter or located in descending portion. Type of resection was not an independent risk factor for the prognosis of duodenal GISTs. Prognosis of duodenal GISTs was significantly worse than that of gastric GISTs.
Collapse
Affiliation(s)
- Zhen Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Department of General Surgery, No.1 Hospital of PLA, 74 Jingning Road, Lanzhou, 730030 China
| | - Gaozan Zheng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Jinqiang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Cadre’ s sanitarium, 62101 Army of PLA, 67 Nahu Road, Xinyang, 464000 Henan China
| | - Shushang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Guanghui Xu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Qiao Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Department of General Surgery, No. 91 Hospital of PLA, 239 Gongye Road, Jiaozuo, 454000 Henan China
| | - Man Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Xiao Lian
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Hongwei Zhang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| |
Collapse
|
4
|
Veličkov A, Radenković G, Petrović V, Veličkov A. DIABETIC ALTERATIONS OF INTERSTITIAL CELLS OF CAJAL. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Radenkovic G, Radenkovic D, Velickov A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J Cell Mol Med 2017; 22:778-785. [PMID: 29193736 PMCID: PMC5783873 DOI: 10.1111/jcmm.13375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Neural crest cells (NCC) can migrate into different parts of the body and express their strong inductive potential. In addition, they are multipotent and are able to differentiate into various cell types with diverse functions. In the primitive gut, NCC induce differentiation of muscular structures and interstitial cells of Cajal (ICC), and they themselves differentiate into the elements of the enteric nervous system (ENS), neurons and glial cells. ICC develop by way of mesenchymal cell differentiation in the outer parts of the primitive gut wall around the myenteric plexus (MP) ganglia, with the exception of colon, where they appear simultaneously also at the submucosal border of the circular muscular layer around the submucosal plexus (SMP) ganglia. However, in a complex process of reciprocal induction of NCC and local mesenchyma, c‐kit positive precursors are the first to differentiate, representing probably the common precursors of ICC and smooth muscle cells (SMC). C‐kit positive precursors could represent a key impact factor regarding the final differentiation of NCC into neurons and glial cells with neurons subsequently excreting stem cell factor (SCF) and other signalling molecules. Under the impact of SCF, a portion of c‐kit positive precursors lying immediately around the ganglia differentiate into ICC, while the rest differentiate into SMC.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Dina Radenkovic
- UCL Medical School, University College London (UCL), London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
6
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
7
|
Ilie CA, Rusu MC, Didilescu AC, Motoc AGM, Mogoantă L. Embryonic hematopoietic stem cells and interstitial Cajal cells in the hindgut of late stage human embryos: evidence and hypotheses. Ann Anat 2015; 200:24-9. [PMID: 25723517 DOI: 10.1016/j.aanat.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/31/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022]
Abstract
There have been few studies on human embryos describing a specific pattern of hindgut colonization by hematopoietic stem cells (HSCs) and interstitial Cajal cells (ICCs). We aimed to study CD34, CD45 and CD117/c-kit expression in late stage human embryos, to attain observational data that could be related to studies on the aorta-gonad-mesonephros (AGM)-derived HSCs, and data on hindgut ICCs. Antibodies were also applied to identify alpha-smooth muscle actin and neurofilaments. Six human embryos of 48-56 days were used. In the 48 day embryo, the hindgut was sporadically populated by c-kit+ ICCs, but, in all other embryos, a layer of myenteric ICCs had been established. Intraneural c-kit+ cells were found in pelvic nerves and vagal trunks, suggesting that the theory of Ramon y Cajal assuming that ICCs may be primitive neurons may not be so invalid. Also in the 48 day embryo, c-kit+/CD45+ perivascular cells were found along the pelvic neurovascular axes, suggesting that not only liver, but also other organs could be seeded with HSCs from the AGM region. CD45+ cells with dendritic morphologies were found in all hindgut layers, including the epithelium. This last evidence is suggestive of an AGM contribution to the tissue resident macrophages and could be related to processes of sprouting angiogenesis which, in turn, have been found to be guided by filopodia of endothelial tip cells. Further studies on human embryonic and fetal material should be performed to attempt to clarify whether the hindgut colonization with HSCs is a transitory or definitive process.
Collapse
Affiliation(s)
- C A Ilie
- Department of Anatomy, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; International Society of Regenerative Medicine and Surgery (ISRMS), Bucharest, Romania.
| | - A C Didilescu
- Division of Embryology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A G M Motoc
- Department of Anatomy, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - L Mogoantă
- Research Center for Microscopic Morphology and Immunology, Department of Morphology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
8
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
9
|
Abramovic M, Radenkovic G, Velickov A. Appearance of interstitial cells of Cajal in the human midgut. Cell Tissue Res 2014; 356:9-14. [PMID: 24414177 DOI: 10.1007/s00441-013-1772-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Several subtypes of the interstitial cells of Cajal (ICC) form networks that play a role in gastrointestinal motor control. ICC express c-kit and depend on signaling via Kit receptors for development and phenotype maintenance. At 7-8 weeks of development, c-kit-immunoreactive (c-kit-IR) cells are present in the human oesophagus, stomach and proximal duodenum wall. In the remaining small and large bowel, c-kit-IR cells appear later. The object of the present study is to determine the timing of the appearance of c-kit-IR ICC in the parts of the digestive tube originating from the midgut (distal duodenum, jejunum, ileum and proximal colon). Specimens were obtained from eight human embryos and 11 fetuses at 7-12 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation. The differentiation of enteric neurons and smooth muscle cells was immunohistochemically examined by using anti-PGP9,5 and anti-desmin antibodies, respectively. In the distal duodenum, jejunum and ileum, c-kit-IR cells emerged at week 9 at the level of the myenteric plexus in the form of a thin row of cells encircling the inception of the ganglia. These cells were multipolar or spindle-shaped with two long processes and corresponded to the ICC of the myenteric plexus. In the proximal colon, c-kit-IR cells emerged at week 9-10 in the form of two parallel belts of cells extending at the submucosal plexus and the myenteric plexus levels. We conclude that ICC develop following two different patterns in the human midgut.
Collapse
Affiliation(s)
- Mirjana Abramovic
- Institute of Chemistry, Faculty of Medicine, University of Nis, 81 Dr Zorana Djindjica Blvd, 18000, Nis, Serbia
| | | | | |
Collapse
|
10
|
Zheng Y, Zhu T, Lin M, Wu D, Wang X. Telocytes in the urinary system. J Transl Med 2012; 10:188. [PMID: 22963412 PMCID: PMC3527325 DOI: 10.1186/1479-5876-10-188] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/06/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Telocytes, a new type of interstitial cells, have been identified in many organs in mammals. The present studies aimed at investigating the ultrastructure, distribution and interactions of telocytes with surrounding cells in the urinary system of rats, to confirm the existence of telocytes in kidneys, ureter and urinary bladder. METHODS Samples of kidney, ureter, or urinary bladder were harvested for the ultrastructure by the electron microscope. The primary culture of telocytes was performed to investigate the dynamic alterations. RESULTS Telocytes mainly located in the sub-capsular space of kidney, or between smooth muscle bundles and in the lamina propria of ureter and urinary bladder. Telocytes established numerous contacts with macrophages in the sub-capsular space of kidney, or with smooth muscle cells, nerve endings as well as blood capillaries in the ureter and urinary bladder. The complete morphology of telocytes with telopodes was observed clearly through the primary cell culture from the kidney tissues of rats. CONCLUSIONS Our data evidenced the existence of telocytes in the urinary system, which may contribute to the tissue reparation and regeneration.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Pulmonary Medicine, Fudan University, Zhongshan Hospital, No.180, Fenglin Road, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
11
|
Radenkovic G, Abramovic M. Differentiation of interstitial cells of Cajal in the human distal colon. Cells Tissues Organs 2012; 196:463-9. [PMID: 22652525 DOI: 10.1159/000336707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2012] [Indexed: 01/06/2023] Open
Abstract
At the end of the embryonic period of human development, interstitial cells of Cajal (ICC) are present in the esophagus, stomach, and proximal duodenum, around the inception of the myenteric plexus (MP) ganglia. In the small and large bowel, ICC appear later. The object of the present study was to determine the timing of appearance and pattern of distribution of ICC in the human embryonic and fetal distal colon. Human distal colon specimens were obtained from 8 embryos and 14 fetuses without gastrointestinal disorders. The specimens were 7-16 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation. Enteric plexuses were immunohistochemically examined using anti-neuron-specific enolase, and the differentiation of smooth muscle cells was studied with anti-desmin antibodies. In the distal colon, ICC emerged at weeks 10-11 of the fetal period in the form of two parallel belts of densely packed cells extending at the submucous plexus (SMP) and the MP level. These cells correspond to ICC of the SMP (ICC-SMP) and ICC of the MP (ICC-MP). The simultaneous appearance of ICC at the SMP and MP level in the distal colon can be explained by the fact that there are differences in the migration of neural crest cells in particular portions of the digestive tube. In conclusion, in humans, there was a difference in the patterns of development of ICC in the distal colon compared to the rest of the gut.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia.
| | | |
Collapse
|
12
|
Abstract
We show the existence of a novel type of interstitial cell-telocytes (TC) in mouse trachea and lungs. We used cell cultures, vital stainings, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and immunohistochemistry (IHC). Phase contrast microscopy on cultured cells showed cells with unequivocally characteristic morphology of typical TC (cells with telopodes-Tp). SEM revealed typical TC with two to three Tp-very long and branched cell prolongations. Tp consist of an alternation of thin segments (podomers) and thick segments (podoms). The latter accommodate mitochondria (as shown by Janus Green and MitoTracker), rough endoplasmic reticulum and caveolae. TEM showed characteristic podomers and podoms as well as close relationships with nerve endings and blood capillaries. IHC revealed positive expression of TC for c-kit, vimentin and CD34. In conclusion, this study shows the presence in trachea and lungs of a peculiar type of cells, which fulfils the criteria for TC.
Collapse
Affiliation(s)
- Y Zheng
- Department of Pulmonary Medicine and Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
13
|
Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 2011; 15:1379-92. [PMID: 21609392 PMCID: PMC4373336 DOI: 10.1111/j.1582-4934.2011.01330.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma.
Collapse
Affiliation(s)
- L M Popescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
14
|
Gherghiceanu M, Popescu LM. Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med 2011; 15:1005-11. [PMID: 21426485 PMCID: PMC3922684 DOI: 10.1111/j.1582-4934.2011.01299.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myocardium is composed of two main cell populations: cardiomyocytes (CMs) and interstitial cells (e.g. fibroblasts, immunoreactive cells, capillaries). However, very recently we have showed that a novel type of interstitial cell called telocytes (TCs) does exist in epi-, myo- and endocardium. They have very long and thin telopodes (Tp) formed by alternating podomeres and podoms. Heterocellular communication between TCs and CMs it is supposed to occur by shed vesicles and close apposition. If TCs have to play a role in cardiac physiology it is expected to develop direct and unambiguous contacts with CMs. Because a clear membrane-to-membrane junction has not been reported by electron microscopy we have investigated the heterocellular communication in the mouse heart by electron tomography. This advanced technique showed that small dense structures (10-15 nm nanocontacts) directly connect TCs with CMs. More complex and atypical junctions could be observed between TCs and CMs at the level of intercalated discs. This study proves that TCs and CMs are directly connected and might represent a 'functional unit'.
Collapse
|
15
|
Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 2011; 345:391-403. [PMID: 21858462 PMCID: PMC3168741 DOI: 10.1007/s00441-011-1229-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 12/17/2022]
Abstract
This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.
Collapse
|