1
|
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S, Wagner I, Egervari K, Raber J, Duvoisin RM, Pless O, Merkler D, Friese MA. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med 2021; 218:e20201290. [PMID: 33661276 PMCID: PMC7938362 DOI: 10.1084/jem.20201290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with continuous neuronal loss. Treatment of clinical progression remains challenging due to lack of insights into inflammation-induced neurodegenerative pathways. Here, we show that an imbalance in the neuronal receptor interactome is driving glutamate excitotoxicity in neurons of MS patients and identify the MS risk-associated metabotropic glutamate receptor 8 (GRM8) as a decisive modulator. Mechanistically, GRM8 activation counteracted neuronal cAMP accumulation, thereby directly desensitizing the inositol 1,4,5-trisphosphate receptor (IP3R). This profoundly limited glutamate-induced calcium release from the endoplasmic reticulum and subsequent cell death. Notably, we found Grm8-deficient neurons to be more prone to glutamate excitotoxicity, whereas pharmacological activation of GRM8 augmented neuroprotection in mouse and human neurons as well as in a preclinical mouse model of MS. Thus, we demonstrate that GRM8 conveys neuronal resilience to CNS inflammation and is a promising neuroprotective target with broad therapeutic implications.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Lars Binkle
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Jana K. Sonner
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Hornig
- Experimentelle Neuropädiatrie, Klinik für Kinder und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Kristof Egervari
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Xu J, Yuan C, Wang G, Luo J, Ma H, Xu L, Mu Y, Li Y, Seeram NP, Huang X, Li L. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:571-580. [PMID: 29336147 DOI: 10.1021/acs.jafc.7b03285] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emerging data suggest that urolithins, gut microbiota metabolites of ellagitannins, contribute toward multiple health benefits attributed to ellagitannin-rich foods, including walnuts, red raspberry, strawberry, and pomegranate. However, there is limited data on whether the potential neuroprotective effects of these ellagitannin-rich foods are mediated by urolithins. Herein, we evaluated the potential mechanisms of antineuroinflammatory effects of urolithins (urolithins A, B, and C; 8-methyl-O-urolithin A; and 8,9-dimethyl-O-urolithin C) in BV2 murine microglia in vitro. Nitrite analysis and qRT-PCR suggested that urolithins A and B reduced NO levels and suppressed mRNA levels of pro-inflammatory genes of TNF-α, IL-6, IL-1β, iNOS, and COX-2 in LPS-treated microglia. Western blot revealed that urolithins A and B decreased phosphorylation levels of Erk1/2, p38 MAPK, and Akt, prevented IκB-α phosphorylation and degradation, and inhibited NF-κB p65 subunit phosphorylation and nuclear translocation in LPS-stimulated microglia. Our results indicated that urolithins A and B attenuated LPS-induced inflammation in BV2 microglia, which may be mediated by inhibiting NF-κB, MAPKs (p38 and Erk1/2), and Akt signaling pathway activation. The antineuroinflammatory activities of urolithins support their role in the potential neuroprotective effects reported for ellagitannin-rich foods warranting further in vivo studies on these ellagitannin gut microbial derived metabolites.
Collapse
Affiliation(s)
- Jialin Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Chunhui Yuan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jiaming Luo
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Li Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yuanyuan Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy & George and Anne Ryan Institute for Neuroscience, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
3
|
Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. CellNet: network biology applied to stem cell engineering. Cell 2014; 158:903-915. [PMID: 25126793 DOI: 10.1016/j.cell.2014.07.020] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/28/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
Abstract
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.
Collapse
Affiliation(s)
- Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edroaldo Lummertz da Rocha
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Graduate Program in Materials Science and Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - James J Collins
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|