1
|
Hamza W, Ali Pacha L, Hamadouche T, Muller J, Drouot N, Ferrat F, Makri S, Chaouch M, Tazir M, Koenig M, Benhassine T. Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia. BMC MEDICAL GENETICS 2015; 16:36. [PMID: 26068213 PMCID: PMC4630839 DOI: 10.1186/s12881-015-0180-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available. METHODS We explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes. RESULTS In this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1. CONCLUSION We report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be less common or underdiagnosed. To refine the genotype/phenotype correlation in rare and heteregeneous diseases as autosomal recessive ataxias, more extensive epidemiological investigations and reports are necessary as well as more accurate and detailed clinical characterizations. The use of standardized clinical and molecular protocols would thus enable a better knowledge of the different forms of ARCA.
Collapse
Affiliation(s)
- Wahiba Hamza
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| | - Lamia Ali Pacha
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Tarik Hamadouche
- Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria. .,Laboratoire de Biologie Moléculaire, Faculté des Sciences, UMBB, Boumerdes, Algeria.
| | - Jean Muller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France. .,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg UMR7104, INSERM U964, Illkirch, France.
| | - Farida Ferrat
- Service de Neurologie, CHU Ben Aknoun, Alger, Algeria.
| | - Samira Makri
- Service de Neurologie, EHS Ali Aït Idir, Alger, Algeria.
| | | | - Meriem Tazir
- Service de Neurologie, CHU Mustapha Bacha, Alger, Algeria. .,Laboratoire de Neurosciences, Université d'Alger 1, Alger, Algeria.
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, USTHB, Alger, Algeria.
| |
Collapse
|
2
|
Byrne S, Dlamini N, Lumsden D, Pitt M, Zaharieva I, Muntoni F, King A, Robert L, Jungbluth H. SIL1-related Marinesco-Sjoegren syndrome (MSS) with associated motor neuronopathy and bradykinetic movement disorder. Neuromuscul Disord 2015; 25:585-8. [PMID: 25958341 DOI: 10.1016/j.nmd.2015.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/28/2015] [Accepted: 04/08/2015] [Indexed: 11/18/2022]
Abstract
Marinesco-Sjoegren syndrome (MSS) is a recessively inherited multisystem disorder caused by mutations in SIL1 and characterized by cerebellar atrophy with ataxia, cataracts, a skeletal muscle myopathy, and variable degrees of developmental delay. Pathogenic mechanisms implicated to date include mitochondrial, nuclear envelope and lysosomal-autophagic pathway abnormalities. Here we present a 5-year-old girl with SIL1-related MSS and additional unusual features of an associated motor neuronopathy and a bradykinetic movement disorder preceding the onset of ataxia. These findings suggest that an associated motor neuronopathy may be part of the phenotypical spectrum of SIL1-related MSS and should be actively investigated in genetically confirmed cases. The additional observation of a bradykinetic movement disorder suggests an intriguing continuum between neurodevelopmental and neurodegenerative multisystem disorders intricately linked in the same cellular pathways.
Collapse
Affiliation(s)
- Susan Byrne
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Nomazulu Dlamini
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Daniel Lumsden
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Matthew Pitt
- Department of Neurophysiology, Great Ormond Street Hospital for Children, London, UK
| | - Irina Zaharieva
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, UK
| | - Andrew King
- Department of Neuropathology, King's College Hospital, London, UK
| | - Leema Robert
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK; Department of Basic and Clinical Neuroscience Division, IoPPN, King's College, London, UK.
| |
Collapse
|
3
|
Fujitake J, Komatsu Y, Hataya Y, Nishikawa A, Eriguchi M, Mizuta H, Hayashi M. A case of Marinesco-Sjögren syndrome: MRI observations of skeletal muscles, bone metabolism, and treatment with testosterone and risedronate. Intern Med 2011; 50:145-9. [PMID: 21245640 DOI: 10.2169/internalmedicine.50.4206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive disorder characterized by cerebellar ataxia, congenital cataracts, mental retardation, primary hypogonadism, skeletal abnormalities and myopathy, and patients with MSS are considered to be at risk of falls and bone fractures. We report a patient with MSS who received testosterone replacement therapy and risedronate administration. Muscle strength and the MRI features of the skeletal muscles were not changed, but low bone mass was improved by these treatments, and improvement has continued after risedronate treatment alone. This case suggests that treatment of MSS-related low bone mass using bisphosphonates is likely beneficial.
Collapse
Affiliation(s)
- Junko Fujitake
- Department of Neurology, Kyoto City Hospital, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Slavotinek A, Goldman J, Weisiger K, Kostiner D, Golabi M, Packman S, Wilcox W, Hoyme HE, Sherr E. Marinesco-Sjögren syndrome in a male with mild dysmorphism. Am J Med Genet A 2005; 133A:197-201. [PMID: 15633176 DOI: 10.1002/ajmg.a.30504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Marinesco-Sjogren syndrome (MSS) is a rare, autosomal recessive disorder comprising cataracts, cerebellar ataxia caused by cerebellar hypoplasia, mild to moderate mental retardation, neuromuscular weakness, short stature, hypergonadotrophic hypogonadism, and skeletal anomalies. The syndrome was recently mapped to chromosome 5q31, but there is evidence for genetic heterogeneity, and no gene has been identified. We report a 5-year-old male with cataracts, ataxia, a progressive cerebellar atrophy, developmental delay, seizures, hypotonia, and a sensorimotor neuropathy consistent with many cases of MSS. He also had mild craniofacial dysmorphism consisting of hypertrichosis and synophrys, deep-set eyes with epicanthic folds, a flat philtrum, a high palate, short thumbs, and a wide sandal gap between the first and second toes. Skeletal findings included an increased kyphosis. We reviewed the literature on MSS to determine if craniofacial dysmorphism and the presence of neuropathy and/or myopathy would prove to be diagnostically useful in this phenotypically heterogeneous condition. The majority of cases of MSS do not have craniofacial dysmorphism, but other cases have been reported with features such as ptosis or a myopathic facies that are likely to reflect the underlying myopathic or neuromuscular processes in MSS.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, Division of Medical Genetics, University of California-San Francisco, 533 Parnassus Street, San Francisco, CA 94143-0748, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lagier-Tourenne C, Tranebaerg L, Chaigne D, Gribaa M, Dollfus H, Silvestri G, Bétard C, Warter JM, Koenig M. Homozygosity mapping of Marinesco-Sjögren syndrome to 5q31. Eur J Hum Genet 2004; 11:770-8. [PMID: 14512967 DOI: 10.1038/sj.ejhg.5201068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Marinesco-Sjögren syndrome (MSS), first described in 1931, is an autosomal recessive condition characterised by somatic and mental retardation, congenital cataracts and cerebellar ataxia. Progressive myopathy was later reported to be also a cardinal sign of MSS, with myopathic changes on muscle biopsies. Hypergonadotrophic hypogonadism and skeletal deformities related to pronounced hypotonia were also reported. The major differential diagnosis of MSS is the syndrome defined by congenital cataracts, facial dysmorphism and peripheral neuropathy (CCFDN), which is localised to 18qter. Using homozygosity mapping strategy in two large consanguineous families of Turkish and Norwegian origin, respectively, we have identified the MSS locus on chromosome 5q31. LOD score calculation, including the consanguinity loops, gave a maximum value of 2.9 and 5.6 at theta=0 for the Turkish and the Norwegian families, respectively, indicating linkage between the disease and the D5S1995-D5S436 haplotype spanning a 9.3 cM interval. Patients of the two families presented with the strict clinical features of MSS. On the other hand, the study of two smaller French and Italian families, initially diagnosed as presenting an atypical MS syndrome, clearly excluded linkage from both the MSS locus on 5q31 and the CCFDN locus in 18qter. Patients of the two excluded families had all MSS features (but the myopathic changes) plus peripheral neuropathy and optic atrophy, and various combinations of microcornea, hearing impairment, seizures, Type I diabetes, cerebral atrophy and leucoencephalopathy, indicating that only the pure MSS syndrome is a homogeneous genetic entity.
Collapse
Affiliation(s)
- C Lagier-Tourenne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis-Pasteur, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|