1
|
Ekman FR, Bjellvi J, Ljunggren S, Malmgren K, Nilsson D. Laser Interstitial Thermal Therapy versus Open Surgery for Mesial Temporal Lobe Epilepsy: A Systematic Review and Meta-Analysis. World Neurosurg 2024:S1878-8750(24)01638-3. [PMID: 39332763 DOI: 10.1016/j.wneu.2024.09.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Epilepsy surgery offers a vital treatment option for drug-resistant mesial temporal lobe epilepsy, with temporal lobe resection (TLR) and magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) being fundamental interventions. This meta-analysis specifically examines seizure outcomes at extended follow-up periods exceeding 24 months, visual field deficits as measured by perimetry, and complication rates both overall and categorized based on duration as minor (transient <6 months) or major (persistent >6 months) to inform clinical decision-making. For seizure freedom, TLR was superior, with 72.5% [65.6%, 78.5%] of patients achieving postoperative seizure freedom compared to 57.1% [51.2%, 62.7%] for MRgLITT (P value <0.01). Visual field deficits were observed in 79.4% [59.5%, 91.0%] of TLR patients and 49.8% [23.6%, 76.0%] of MRgLITT patients, a difference not reaching statistical significance (P value: 0.08). Overall complication rates were 11.4% [7.4%, 17.2%] for TLR and 6.5% [3.3%, 12.3%] for MRgLITT (P value 0.15). Major complications occurred in 2.0% [1.1%, 3.09%] of TLR cases and 2.7% [1.4%, 5.2%] of MRgLITT cases (P value 0.54), while minor complications were significantly more frequent with TLR at 9.9% [6.4%, 15.0%] versus MRgLITT's 4.1% [1.9%, 8.4%] (P value 0.04). MRgLITT had a more favorable outcome regarding confrontation naming, while more studies are needed regarding verbal memory to be able to draw firm conclusions. TLR provides superior seizure freedom but comes with an increased risk of transient complications. Although there was no statistical significance in visual field deficits, the trend suggests a higher frequency with TLR. The study's extensive data analysis, including rigorous sensitivity checks, ensures the robustness of these conclusions, reflecting a comprehensive analysis of the available data at this time point.
Collapse
Affiliation(s)
- Felix R Ekman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bjellvi
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia Ljunggren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristina Malmgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Zhang B, Wang X, Wang J, Wang M, Guan Y, Liu Z, Zhang Y, Zhao M, Ding H, Xu K, Deng J, Li T, Luan G, Zhou J. The Effect of Stereoelectroencephalography on the Long-Term Outcomes of Different Side Anterior Temporal Lobectomy: A Single-Center Retrospective Study. World Neurosurg 2024:S1878-8750(24)01593-6. [PMID: 39278540 DOI: 10.1016/j.wneu.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE), and Stereoelectroencephalography (SEEG) plays a critical role in precisely localizing the epileptogenic zone (EZ). This study aimed to explore the effect of SEEG on the long-term outcomes of different side ATL. METHODS From March 2012 to February 2020, a retrospective analysis was conducted on 231 TLE patients who underwent standard ATL surgery. According to the surgical sides and the utilization of SEEG during preoperative evaluation, the patients were categorized into 4 groups, with a follow-up period exceeding 2 years. RESULTS Among the 231 TLE patients, the probability of being seizure-free 2 years after the surgery was 80.52%, which decreased to 65.65% after 5 years. There was no significant difference in outcomes between SEEG and non-SEEG patients. For overall and non-SEEG patients, there was no significant difference in short-term outcomes between different surgical sides. However, the long-term outcomes of right ATL patients were significantly better than left. Interestingly, for patients who underwent SEEG, there was no significant difference in both short-term and long-term outcomes between different surgical sides. CONCLUSIONS Some TLE patients encounter challenges in localizing the EZ through noninvasive evaluation, necessitating the use of SEEG for precise localization. Furthermore, their seizure outcomes after surgery can be the same with the patients who have a clear EZ in noninvasive evaluation. And SEEG patients can achieve a more stable long-term prognosis than non-SEEG patients.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yao Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Bustros S, Kaur M, Ritchey E, Szaflarski JP, McGwin GJ, Riley KO, Bentley JN, Memon AA, Jaisani Z. Non-lesional epilepsy does not necessarily convey poor outcomes after invasive monitoring followed by resection or thermal ablation. Neurol Res 2024; 46:653-661. [PMID: 38602305 DOI: 10.1080/01616412.2024.2340879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE We aimed to compare outcomes including seizure-free status at the last follow-up in adult patients with medically refractory focal epilepsy identified as lesional vs. non-lesional based on their magnetic resonance imaging (MRI) findings who underwent invasive evaluation followed by subsequent resection or thermal ablation (LiTT). METHODS We identified 88 adult patients who underwent intracranial monitoring between 2014 and 2021. Of those, 40 received resection or LiTT, and they were dichotomized based on MRI findings, as lesional (N = 28) and non-lesional (N = 12). Patient demographics, seizure characteristics, non-invasive interventions, intracranial monitoring, and surgical variables were compared between the groups. Postsurgical seizure outcome at the last follow-up was rated according to the Engel classification, and postoperative seizure freedom was determined by Kaplan-Meyer survival analysis. Statistical analyses employed Fisher's exact test to compare categorical variables, while a t-test was used for continuous variables. RESULTS There were no differences in baseline characteristics between groups except for more often noted PET abnormality in the lesional group (p = 0.0003). 64% of the lesional group and 57% of the non-lesional group received surgical resection or LiTT (p = 0.78). At the last follow-up, 78.5% of the patients with lesional MRI findings achieved Engel I outcomes compared to 66.7% of non-lesional patients (p = 0.45). Kaplan-Meier curves did not show a significant difference in seizure-free duration between both groups after surgical intervention (p = 0.49). SIGNIFICANCE In our sample, the absence of lesion on brain MRI was not associated with worse seizure outcomes in adult patients who underwent invasive intracranial monitoring followed by resection or thermal ablation.
Collapse
Affiliation(s)
- Stephanie Bustros
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Manmeet Kaur
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Elizabeth Ritchey
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gerald Jr McGwin
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen O Riley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J Nicole Bentley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel A Memon
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Zeenat Jaisani
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
4
|
Scalise S, Zannino C, Lucchino V, Lo Conte M, Abbonante V, Benedetto GL, Scalise M, Gambardella A, Parrotta EI, Cuda G. Ascorbic acid mitigates the impact of oxidative stress in a human model of febrile seizure and mesial temporal lobe epilepsy. Sci Rep 2024; 14:5941. [PMID: 38467734 PMCID: PMC10928078 DOI: 10.1038/s41598-024-56680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 03/13/2024] Open
Abstract
Prolonged febrile seizures (FS) in children are linked to the development of temporal lobe epilepsy (MTLE). The association between these two pathologies may be ascribed to the long-term effects that FS exert on neural stem cells, negatively affecting the generation of new neurons. Among the insults associated with FS, oxidative stress is noteworthy. Here, we investigated the consequences of exposure to hydrogen peroxide (H2O2) in an induced pluripotent stem cell-derived neural stem cells (iNSCs) model of a patient affected by FS and MTLE. In our study, we compare the findings from the MTLE patient with those derived from iNSCs of a sibling exhibiting a milder phenotype defined only by FS, as well as a healthy individual. In response to H2O2 treatment, iNSCs derived from MTLE patients demonstrated an elevated production of reactive oxygen species and increased apoptosis, despite the higher expression levels of antioxidant genes and proteins compared to other cell lines analysed. Among the potential causative mechanisms of enhanced vulnerability of MTLE patient iNSCs to oxidative stress, we found that these cells express low levels of the heat shock protein HSPB1 and of the autophagy adaptor SQSTM1/p62. Pre-treatment of diseased iNSCs with the antioxidant molecule ascorbic acid restored HSBP1 and p62 expression and simultaneously reduced the levels of ROS and apoptosis. Our findings suggest the potential for rescuing the impaired oxidative stress response in diseased iNSCs through antioxidant treatment, offering a promising mechanism to prevent FS degeneration in MTLE.
Collapse
Affiliation(s)
- Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Vittorio Abbonante
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
5
|
Dasgupta D, Finn R, Chari A, Giampiccolo D, de Tisi J, O'Keeffe AG, Miserocchi A, McEvoy AW, Vos SB, Duncan JS. Hippocampal resection in temporal lobe epilepsy: Do we need to resect the tail? Epilepsy Res 2023; 190:107086. [PMID: 36709527 PMCID: PMC10626579 DOI: 10.1016/j.eplepsyres.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Anteromesial temporal lobe resection is the most common surgical technique used to treat drug-resistant mesial temporal lobe epilepsy, particularly when secondary to hippocampal sclerosis. Structural and functional imaging data suggest the importance of sparing the posterior hippocampus for minimising language and memory deficits. Recent work has challenged the view that maximal posterior hippocampal resection improves seizure outcome. This study was designed to assess whether resection of posterior hippocampal atrophy was associated with improved seizure outcome. METHODS Retrospective analysis of a prospective database of all anteromesial temporal lobe resections performed in individuals with hippocampal sclerosis at our epilepsy surgery centre, 2013-2021. Pre- and post-operative MRI were reviewed by 2 neurosurgical fellows to assess whether the atrophic segment, displayed by automated hippocampal morphometry, was resected, and ILAE seizure outcomes were collected at 1 year and last clinical follow-up. Data analysis used univariate and binary logistic regression. RESULTS Sixty consecutive eligible patients were identified of whom 70% were seizure free (ILAE Class 1 & 2) at one year. There was no statistically significant difference in seizure freedom outcomes in patients who had complete resection of atrophic posterior hippocampus or not (Fisher's Exact test statistic 0.69, not significant at p < .05) both at one year, and at last clinical follow-up. In the multivariate analysis only a history of status epilepticus (OR=0.2, 95%CI:0.042-0.955, p = .04) at one year, and pre-operative psychiatric disorder (OR=0.145, 95%CI:0.036-0.588, p = .007) at last clinical follow-up, were associated with a reduced chance of seizure freedom. SIGNIFICANCE Our data suggest that seizure freedom is not associated with whether or not posterior hippocampal atrophy is resected. This challenges the traditional surgical dogma of maximal posterior hippocampal resection in anteromesial temporal lobe resections and is a step further optimising this surgical procedure to maximise seizure freedom and minimise associated language and memory deficits.
Collapse
Affiliation(s)
- Debayan Dasgupta
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Roisin Finn
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Aswin Chari
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK; Developmental Neuroscience, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Institute of Neurosciences, Cleveland Clinic London, London, UK.
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Aidan G O'Keeffe
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK. aidan.o'
| | - Anna Miserocchi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Andrew W McEvoy
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - Sjoerd B Vos
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia.
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
6
|
Liu Q, Wu N, Liu C, Yu H, Sun Y, Wang Y, Yu G, Wang S, Ji T, Liu X, Jiang Y, Cai L. Pediatric epilepsy surgery in patients with Lennox-Gastaut syndrome after viral encephalitis. Front Neurol 2023; 14:1097535. [PMID: 36908602 PMCID: PMC9998939 DOI: 10.3389/fneur.2023.1097535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 03/14/2023] Open
Abstract
Objective To analyse the surgical outcomes of pediatric patients with Lennox-Gastaut syndrome (LGS) secondary to viral encephalitis. Methods We retrospectively analyzed the data of four patients with LGS secondary to viral encephalitis who underwent surgery at the pediatric epilepsy center of Peking University First Hospital from January 2014 to December 2019. Preoperative evaluations included a detailed history, long-term video electroencephalography (VEEG), brain magnetic resonance imaging (MRI), positron emission tomography (PET) and a neuropsychological test. All patients were followed up at 1, 3, and 6 months and then yearly. The surgical outcome was evaluated according to the Engel classification. Results Among the four children, the surgeries were right temporo-parieto-occipital disconnection (case 1), corpus callosotomy (case 2), left temporo-parieto-occipital disconnection (case 3), and left temporal lobectomy (case 4). The pathology was gliosis secondary to viral encephalitis. The median follow-up time was 4 years (3-5 years). At the last follow-up, one case had Engel I, two cases had Engel III, and one case had Engel IV. Conclusions Preliminary observations shows that surgical treatment may be challenging for patients with LGS secondary to viral encephalitis. However, suitable surgical candidacy and approaches have a significant impact on the prognosis of the patients.
Collapse
Affiliation(s)
- Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Nan Wu
- Department of Neurosurgery, Tianjin Children's Hospital, Children's Hospital of Tianjin University, Tianjin, China
| | - Chang Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yu Sun
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yao Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Guojing Yu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Shuang Wang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.,Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Taoyun Ji
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.,Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyan Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.,Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China.,Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lixin Cai
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Fujiwara H, Kadis DS, Greiner HM, Holland KD, Arya R, Aungaroon G, Fong SL, Arthur TM, Kremer KM, Lin N, Liu W, Mangano DO FT, Skoch J, Horn PS, Tenney JR. Clinical validation of magnetoencephalography network analysis for presurgical epilepsy evaluation. Clin Neurophysiol 2022; 142:199-208. [DOI: 10.1016/j.clinph.2022.07.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
|
8
|
Zhao L, Zhang X, Luo Y, Hu J, Liang C, Wang L, Gao J, Qi X, Zhai F, Shi L, Zhu M. Automated detection of hippocampal sclerosis: Comparison of a composite MRI-based index with conventional MRI measures. Epilepsy Res 2021; 174:106638. [PMID: 33964793 DOI: 10.1016/j.eplepsyres.2021.106638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aims to compare the performance of an MRI-based composite index (HSI) with conventional MRI-based measures in hippocampal sclerosis (HS) detection and postoperative outcome estimation. METHODS Seventy-two temporal lobe epilepsy (TLE) patients with pathologically confirmed HS and fifteen TLE patients without HS were included retrospectively. The T1-weighted and FLAIR images of these patients were processed with AccuBrain to quantify the hippocampal volume (HV) and the hippocampal FLAIR signal. The HSI index that considered both HV and hippocampal FLAIR signal was also calculated. Two experienced neuropathologists rated the HS severity with the resected tissue and reached an agreement for all cases. The asymmetry indices of the MRI measures were used to lateralize the sclerotic side, and the original MRI measures were applied to detect HS vs. normal hippocampi. Operating characteristic curve (ROC) analyses were performed for these predictions. We also investigated the sensitivity of the ipsilateral MRI measures in characterizing the pathological severity of HS and the associations of the MRI measures with postoperative outcomes (Engel class categories). RESULTS With the optimal cutoffs, the asymmetry indices of HSI and HV both achieved excellent performance in differentiating left vs. right HS (accuracy = 100 %), and the absolute value of the asymmetry index of HSI performed best in differentiating unilateral vs. bilateral HS (accuracy = 91.7 %). Regarding the detection of HS, HSI performed better in sensitivity (94.4 % vs. 87.5 %) while HV performed better in specificity (93.6 % vs. 89.4 %) when the contralateral site of unilateral HS and both sides of non-HS patients were considered as the normal reference, and HSI performed even better than HV when only both sides of non-HS patients were considered as the normal reference (AUC: 0.956 vs. 0.934, p = 0.038). The ipsilateral HSI presented the strongest association with the pathological rating of HS severity (r = 0.405, p < 0.001). None of the ipsilateral or contralateral MRI measures was associated with the postoperative outcomes. Among the asymmetry indices, only the absolute value of the asymmetry index of HV presented a significant association with the Engel classifications for the Year 2∼3 visit (r = -0.466, p = 0.004) or the latest visit with >1 year follow-up (r = -0.374, p = 0.003) while controlling for disease duration and follow-up duration. CONCLUSION The HSI index and HV presented comparable good performance in HS detection, and HSI may have better sensitivity than HV in differentiating pathological HS severity. Higher magnitude of HV dissymmetry may indicate better post-surgical outcomes for HS patients.
Collapse
Affiliation(s)
- Lei Zhao
- BrainNow Research Institute, Shenzhen, China
| | - Xufei Zhang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | - Jianxin Hu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Chenyang Liang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Lining Wang
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Jie Gao
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, China
| | - Feng Zhai
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China; Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Mingwang Zhu
- Department of Radiology, Sanbo Brain Hospital, Capital Medical University, China.
| |
Collapse
|
9
|
Dou W, Zhao L, Su C, Lu Q, Liu Q, Guo J, Zhao Y, Luo Y, Shi L, Zhang Y, Wang R, Feng F. A quantitative MRI index for assessing the severity of hippocampal sclerosis in temporal lobe epilepsy. BMC Med Imaging 2020; 20:42. [PMID: 32334546 PMCID: PMC7183666 DOI: 10.1186/s12880-020-00440-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hippocampal sclerosis (HS) is associated with post-surgery outcome in patients with temporal lobe epilepsy (TLE), and an automated method that quantifies HS severity is still lacking. Here, we aim to propose an MRI-based HS index (HSI) that integrates hippocampal volume and FLAIR signal to measure the severity of HS. Methods Forty-two pre-surgery TLE patients were included retrospectively, with T1-weighted (T1W) and FLAIR images acquired from each subject. Two experienced neurosurgeons (W.D. and C.S.) and one neurologist (Q.L.) rated HS severity with a four-class grading scale (normal, mild, moderate and severe) based on both hippocampal volume loss and increased FLAIR signal. A consensus of HS severity for each subject was made by voting among the three visual rating results. Regarding the automatic quantification, the hippocampal volume was quantified by AccuBrain on T1W image, and the FLAIR signal of hippocampus was calculated as the mean intensity of hippocampal region on the FLAIR image (normalized by the mean intensity of gray matter). To fit the HSI from visual rating, we applied ordinal regression with the voted visual rating as the dependent variable, and hippocampal volume and FLAIR signal as the independent variables. The HSI was calculated by weighting the predicted probabilities of the four-class grading scales from ordinal regression. Results The intra-class correlation coefficient (single measure) of the three raters was 0.806. The generated HSI was significantly correlated with the visual rating scales of the three raters (W.D.: 0.823, Q.L.: 0.817, C.S.: 0.717). HSI scores well differentiated the different HS categories as defined by the agreed HS visual rating (normal vs. mild: p < 0.001, mild vs. moderate: p < 0.001, moderate vs. severe: p = 0.001). Conclusions The proposed HSI was consistent with visual rating scales from epileptologists and sensitive to HS severity. This MRI-based index may help to evaluate HS severity in clinical practice. Further validations are needed to associate HSI with post-surgery outcomes.
Collapse
Affiliation(s)
- Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Lei Zhao
- BrainNow Research Institute, Shenzhen, Guangdong Province, China
| | - Changbao Su
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Lu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Jinzhu Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Yuming Zhao
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, Guangdong Province, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, Guangdong Province, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yiwei Zhang
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China.
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
10
|
Grewal SS, Alvi MA, Perkins WJ, Cascino GD, Britton JW, Burkholder DB, So E, Shin C, Marsh RW, Meyer FB, Worrell GA, Van Gompel JJ. Reassessing the impact of intraoperative electrocorticography on postoperative outcome of patients undergoing standard temporal lobectomy for MRI-negative temporal lobe epilepsy. J Neurosurg 2020; 132:605-614. [PMID: 30797216 DOI: 10.3171/2018.11.jns182124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Almost 30% of the patients with suspected temporal lobe epilepsy (TLE) have normal results on MRI. Success rates for resection of MRI-negative TLE are less favorable, ranging from 36% to 76%. Herein the authors describe the impact of intraoperative electrocorticography (ECoG) augmented by opioid activation and its effect on postoperative seizure outcome. METHODS Adult and pediatric patients with medically resistant MRI-negative TLE who underwent standardized ECoG at the time of their elective anterior temporal lobectomy (ATL) with amygdalohippocampectomy between 1990 and 2016 were included in this study. Seizure recurrence comprised the primary outcome of interest and was assessed using Kaplan-Meier and multivariable Cox regression analysis plots based on distribution of interictal epileptiform discharges (IEDs) recorded on scalp electroencephalography, baseline and opioid-induced IEDs on ECoG, and extent of resection. RESULTS Of the 1144 ATLs performed at the authors' institution between 1990 and 2016, 127 (11.1%) patients (81 females) with MRI-negative TLE were eligible for this study. Patients with complete resection of tissue generating IED recorded on intraoperative ECoG were less likely to have seizure recurrence compared to those with incomplete resection on univariate analysis (p < 0.05). No difference was found in seizure recurrence between patients with bilateral independent IEDs and unilateral IEDs (p = 0.15), presence or absence of opioid-induced epileptiform activation (p = 0.61), or completeness of resection of tissue with opioid-induced IEDs on intraoperative ECoG (p = 0.41). CONCLUSIONS The authors found that incomplete resection of IED-generating tissue on intraoperative ECoG was associated with an increased chance of seizure recurrence. However, they found that induction of epileptiform activity with intraoperative opioid activation did not provide useful intraoperative data predictive of improving operative results for temporal lobectomy in MRI-negative epilepsy.
Collapse
Affiliation(s)
- Sanjeet S Grewal
- 1Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida; and
| | | | | | | | | | | | - Elson So
- 4Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
11
|
7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magn Reson Imaging 2019; 61:1-8. [DOI: 10.1016/j.mri.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
|
12
|
Abstract
BACKGROUND This is an updated version of the original Cochrane review, published in 2015.Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary between at least 20% and up to 70%. If the epileptogenic zone can be located, surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.Secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence, and to identify the factors that correlate with remission of seizures postoperatively. SEARCH METHODS For the latest update, we searched the following databases on 11 March 2019: Cochrane Register of Studies (CRS Web), which includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid, 1946 to March 08, 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs) that included at least 30 participants in a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), with an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome related to postoperative seizure control. Cohort studies or case series were included in the previous version of this review. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportions of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RRs) and 95% confidence intervals (95% CIs). MAIN RESULTS We identified 182 studies with a total of 16,855 included participants investigating outcomes of surgery for epilepsy. Nine studies were RCTs (including two that randomised participants to surgery or medical treatment (99 participants included in the two trials received medical treatment)). Risk of bias in these RCTs was unclear or high. Most of the remaining 173 non-randomised studies followed a retrospective design. We assessed study quality using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses, we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across domains.In terms of freedom from seizures, two RCTs found surgery (n = 97) to be superior to medical treatment (n = 99); four found no statistically significant differences between anterior temporal lobectomy (ATL) with or without corpus callosotomy (n = 60), between subtemporal or transsylvian approach to selective amygdalohippocampectomy (SAH) (n = 47); between ATL, SAH and parahippocampectomy (n = 43) or between 2.5 cm and 3.5 cm ATL resection (n = 207). One RCT found total hippocampectomy to be superior to partial hippocampectomy (n = 70) and one found ATL to be superior to stereotactic radiosurgery (n = 58); and another provided data to show that for Lennox-Gastaut syndrome, no significant differences in seizure outcomes were evident between those treated with resection of the epileptogenic zone and those treated with resection of the epileptogenic zone plus corpus callosotomy (n = 43). We judged evidence from the nine RCTs to be of moderate to very low quality due to lack of information reported about the randomised trial design and the restricted study populations.Of the 16,756 participants included in this review who underwent a surgical procedure, 10,696 (64%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to recording of adverse events to be very poor.In total, 120 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography, history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection, and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation, and presence of postoperative discharges were prognostic factors of outcome.Twenty-nine studies reported multi-variable models of prognostic factors, and showed that the direction of association of factors with outcomes was generally the same as that found in univariate analyses.We observed variability in many of our analyses, likely due to small study sizes with unbalanced group sizes and variation in the definition of seizure outcome, the definition of prognostic factors, and the influence of the site of surgery AUTHORS' CONCLUSIONS: Study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcomes. Future research should be of high quality, follow a prospective design, be appropriately powered, and focus on specific issues related to diagnostic tools, the site-specific surgical approach, and other issues such as extent of resection. Researchers should investigate prognostic factors related to the outcome of surgery via multi-variable statistical regression modelling, where variables are selected for modelling according to clinical relevance, and all numerical results of the prognostic models are fully reported. Journal editors should not accept papers for which study authors did not record adverse events from a medical intervention. Researchers have achieved improvements in cancer care over the past three to four decades by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Jennifer Cotton
- The Clatterbridge Cancer Centre NHS Foundation TrustWirralUK
| | - Sacha Gandhi
- NHS Ayrshire and ArranDepartment of General SurgeryAyrUKKA6 6DX
| | - Jennifer Weston
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneFazakerleyLiverpoolMerseysideUKL9 7LJ
| | - Ajay Sudan
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | - Roberto Ramirez
- Royal Manchester Children's HospitalHospital RoadPendleburyManchesterUKM27 4HA
| | - Richard Newton
- Royal Manchester Children's HospitalDepartment of Paediatric NeurologyHathersage RoadManchesterUKM13 0JH
| | | |
Collapse
|
13
|
Magnetic Resonance–Guided Laser Interstitial Thermal Therapy Versus Stereotactic Radiosurgery for Medically Intractable Temporal Lobe Epilepsy: A Systematic Review and Meta-Analysis of Seizure Outcomes and Complications. World Neurosurg 2019; 122:e32-e47. [DOI: 10.1016/j.wneu.2018.08.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
|
14
|
Kreilkamp BAK, Weber B, Elkommos SB, Richardson MP, Keller SS. Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes. Acta Neurol Scand 2018; 137:598-608. [PMID: 29572865 PMCID: PMC5969077 DOI: 10.1111/ane.12926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 12/24/2022]
Abstract
Objective To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. Methods We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1‐weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. Results Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus‐amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. Conclusions Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome.
Collapse
Affiliation(s)
- B. A. K. Kreilkamp
- Department of Molecular and Clinical Pharmacology; Institute of Translational Medicine; University of Liverpool; Liverpool UK
- Department of Neuroradiology; The Walton Centre NHS Foundation Trust; Liverpool UK
| | - B. Weber
- Department of Epileptology; University of Bonn; Bonn Germany
- Center for Economics and Neuroscience; University of Bonn; Bonn Germany
- Department of NeuroCognition/Imaging; Life& Brain Research Center; Bonn Germany
| | - S. B. Elkommos
- Department of Molecular and Clinical Sciences; St George's, University of London; London UK
| | - M. P. Richardson
- Department of Basic and Clinical Neuroscience; Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
- Engineering and Physical Sciences Research Council Centre for Predictive Modelling in Healthcare; University of Exeter; Exeter UK
| | - S. S. Keller
- Department of Molecular and Clinical Pharmacology; Institute of Translational Medicine; University of Liverpool; Liverpool UK
- Department of Neuroradiology; The Walton Centre NHS Foundation Trust; Liverpool UK
- Department of Basic and Clinical Neuroscience; Institute of Psychiatry, Psychology & Neuroscience; King's College London; London UK
| |
Collapse
|
15
|
Uribe-San-Martín R, Ciampi E, Di Giacomo R, Vásquez M, Cárcamo C, Godoy J, Lo Russo G, Tassi L. Corpus callosum atrophy and post-surgical seizures in temporal lobe epilepsy associated with hippocampal sclerosis. Epilepsy Res 2018; 142:29-35. [PMID: 29549794 DOI: 10.1016/j.eplepsyres.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Our aim in this retrospective study was to explore whether corpus callosum atrophy could predict the post-surgical seizure control in patients with temporal lobe epilepsy associated with Hippocampal Sclerosis (HS). METHODS We used the Corpus Callosum Index (CCI) obtained from best mid-sagittal T2/FLAIR or T1-weighted MRI at two time-points, more than one year apart. CCI has been mainly used in Multiple Sclerosis (MS), but not in epilepsy, so we tested the validity of our results performing a proof of concept cohort, incorporating MS patients with and without epilepsy. Then, we explored this measurement in a well-characterized and long-term cohort of patients with temporal lobe epilepsy associated with HS. RESULTS In the proof of concept cohort (MS without epilepsy n:40, and MS with epilepsy, n:15), we found a larger CCI atrophy rate in MS patients with poor epilepsy control vs. MS without epilepsy (p:0.01). Then, in HS patients (n:74), annualized CCI atrophy rate was correlated with the long-term Engel scale (Rho:0.31, p:0.007). In patients with post-surgical seizure recurrence, a larger CCI atrophy rate was found one year before any seizure relapse. Univariate analysis showed an increased risk of seizure recurrence in males, higher pre-surgical seizure frequency, necessity of invasive EEG monitoring, and higher CCI atrophy rate. Two of these variables were independent predictors in the multivariate analysis, male gender (HR:4.87, p:0.002) and CCI atrophy rate (HR:1.21, p:0.001). CONCLUSION We demonstrated that atrophy of the corpus callosum, using the CCI, is related with poor seizure control in two different neurological disorders presenting with epilepsy, which might suggest that corpus callosum atrophy obtained in early post-surgical follow-up, could be a biomarker for predicting recurrences and guiding treatment plans.
Collapse
Affiliation(s)
- Reinaldo Uribe-San-Martín
- Neurology Department, Pontifical Catholic University of Chile, Santiago, Chile; Neurology Service, "Dr. Sótero del Río" Hospital, Santiago, Chile.
| | - Ethel Ciampi
- Neurology Department, Pontifical Catholic University of Chile, Santiago, Chile; Neurology Service, "Dr. Sótero del Río" Hospital, Santiago, Chile
| | - Roberta Di Giacomo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D́Annunzio" University, Chieti, Italy
| | - Macarena Vásquez
- Neurology Department, Pontifical Catholic University of Chile, Santiago, Chile
| | - Claudia Cárcamo
- Neurology Department, Pontifical Catholic University of Chile, Santiago, Chile
| | - Jaime Godoy
- Neurology Department, Pontifical Catholic University of Chile, Santiago, Chile
| | - Giorgio Lo Russo
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milano, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milano, Italy
| |
Collapse
|
16
|
Wassenaar M, Leijten FSS, de Haan GJ, Uijl SG, Sander JW. Electro-clinical criteria and surgical outcome: Is there a difference between mesial and lesional temporal lobe epilepsy? Acta Neurol Scand 2017. [PMID: 28626979 DOI: 10.1111/ane.12790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Mesial temporal lobe epilepsy syndrome (MTLE) with specific electrophysiological and clinical characteristics and hippocampal sclerosis (HS) on MRI is considered the prototype of a syndrome with good surgical prognosis. Ictal onset zones in MTLE have been found to extend outside the hippocampus and neocortical seizures often involve mesial structures. It can, thus, be questioned whether MTLE with HS is different from lesional temporal epilepsies with respect to electro-clinical characteristics and surgical prognosis. We assessed whether MTLE with HS is distinguishable from lesional TLE and which criteria determine surgical outcome. METHODS People in a retrospective cohort of 389 individuals with MRI abnormalities who underwent temporal lobectomy, were divided into "HS only" or "lesional" TLEs. Twenty-six presented with dual pathology and were excluded from further analysis. We compared surgical outcome and electro-clinical characteristics. RESULTS Over half (61%) had "HS only." Four electro-clinical characteristics (age at epilepsy onset, febrile seizures, memory dysfunction and contralateral dystonic posturing) distinguished "HS only" from "lesional" TLE, but there was considerable overlap. Seizure freedom 2 years after surgery (Engel class 1) was similar: 67% ("HS only") vs 69% ("lesional" TLE). Neither presence of HS nor electro-clinical criteria was associated with surgical outcome. CONCLUSIONS Despite small differences in electrophysiological and clinical characteristics between MTLE with HS and lesional TLE, surgical outcomes are similar, indicating that aetiology seems irrelevant in the referral for temporal surgery.
Collapse
Affiliation(s)
- M. Wassenaar
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
- Department of Neurology and Neurosurgery; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - F. S. S. Leijten
- Department of Neurology and Neurosurgery; Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - G.-J. de Haan
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
| | - S. G. Uijl
- Julius Center for Health Sciences and Primary Care; University Medical Center Utrecht; Utrecht The Netherlands
| | - J. W. Sander
- Stichting Epilepsie Instellingen Nederland (SEIN); Heemstede The Netherlands
- NIHR University College London Hospitals; Biomedical Research Centre; UCL Institute of Neurology; London UK
- Chalfont Centre for Epilepsy; Chalfont St Peter UK
| |
Collapse
|
17
|
Estey CM, Dewey CW, Rishniw M, Lin DM, Bouma J, Sackman J, Burkland E. A Subset of Dogs with Presumptive Idiopathic Epilepsy Show Hippocampal Asymmetry: A Volumetric Comparison with Non-Epileptic Dogs Using MRI. Front Vet Sci 2017; 4:183. [PMID: 29167797 PMCID: PMC5682304 DOI: 10.3389/fvets.2017.00183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/11/2017] [Indexed: 01/14/2023] Open
Abstract
MRI-acquired volumetric measurements from 100 dogs with presumptive idiopathic epilepsy (IE) and 41 non-epileptic (non-IE) dogs were used to determine if hippocampal asymmetry exists in the IE as compared to the non-IE dogs. MRI databases from three institutions were searched for dogs that underwent MRI of the brain and were determined to have IE and those that were considered non-IE dogs. Volumes of the right and left hippocampi were measured using Mimics® software. Median hippocampal volumes of IE and non-IE dogs were 0.47 and 0.53 cm3, respectively. There was no significant difference in overall hippocampal volume between IE and non-IE dogs; however, IE dogs had greater hippocampal asymmetry than non-IE dogs (P < 0.012). A threshold value of 1.16 from the hippocampal ratio had an 85% specificity for identifying IE-associated asymmetry. Thirty five percent of IE dogs had a hippocampal ratio >1.16. Asymmetry was not associated with any particular hemisphere (P = 0.67). Our study indicates that hippocampal asymmetry occurs in a subset of dogs with presumptive idiopathic/genetic epilepsy, suggesting a structural etiology to some cases of IE.
Collapse
Affiliation(s)
- Chelsie M Estey
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - Curtis W Dewey
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - Mark Rishniw
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| | - David M Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jennifer Bouma
- Rochester Veterinary Specialists, Rochester, NY, United States
| | - Joseph Sackman
- Long Island Veterinary Specialists, Plainview, NY, United States
| | - Erica Burkland
- Department of Clinical Sciences, Cornell University Hospital for Animals, Ithaca, NY, United States
| |
Collapse
|
18
|
Jalota A, Rossi MA, Pylypyuk V, Stein M, Stoub T, Balabanov A, Bergen D, Bermeo A, Park E, Smith M, Byrne R. Resecting critical nodes from an epileptogenic circuit in refractory focal-onset epilepsy patients using subtraction ictal SPECT coregistered to MRI. J Neurosurg 2016; 125:1565-1576. [PMID: 26991384 DOI: 10.3171/2015.6.jns141719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to assess the positive predictive value of postresection outcomes obtained by presurgical subtracted ictal SPECT in patients with lesional (MRI positive) and nonlesional (MRI negative) refractory extratemporal lobe epilepsy (ETLE) and temporal lobe epilepsy (TLE). Specifically, outcomes were compared between partial versus complete resection of the regions of transient hyperperfusion identified using subtraction ictal SPECT coregistered to MRI (SISCOM) in relation to the ictal onset zone (IOZ) that was confirmed by electrocorticography (ECoG). That is, SISCOM was used to understand the long-term postsurgical outcomes following resection of the IOZ that overlapped with 1 or more regions of ictal onset-associated transient hyperperfusion. METHODS The study cohort included 44 consecutive patients with refractory ETLE or TLE who were treated between 2002 and 2013 and underwent presurgical evaluation using SISCOM. Concordance was determined between SISCOM localization and the IOZ on the basis of ECoG monitoring. In addition, the association between the extent of the resection site overlapping with the SISCOM signal and postresection outcomes were assessed. Postsurgical follow-up was longer than 24 months in 39 of 44 patients. RESULTS The dominant SISCOM signals were concordant with ECoG and overlapped the resection site in 32 of 44 (73%) patients (19 ETLE and 13 TLE patients), and 20 of 32 (63%) patients became seizure free. In all 19 ETLE patients with concordant SISCOM and ECoG results, the indicated location of ictal onset on ECoG was completely resected; 11 of 19 patients (58%) became seizure free (Engel Class I). In all 13 TLE patients with concordant SISCOM and ECoG results, the indicated ECoG focus was completely resected; 9 of 13 patients (69%) became seizure free (Engel Class I). Complete resection of the SISCOM signal was found in 7 of 34 patients (21%). Of these 7 patients, 5 patients (72%) were seizure free (Engel Class I). Partial resection of the SISCOM signal was found in 16 of 34 patients (47%), and 10 of these 16 patients (63%) were seizure free (Engel Class I) after more than 24 months of follow-up. CONCLUSIONS Concordance between 1 or more SISCOM regions of hyperperfusion with ECoG and at least partial resection of the dominant SISCOM signal in this refractory epilepsy cohort provided additional useful information for predicting long-term postresection outcomes. Such regions are likely critical nodes in more extensive, active, epileptogenic circuits. In addition, SPECT scanner technology may limit the sensitivity of meaningful SISCOM signals for identifying the maximal extent of the localizable epileptogenic network.
Collapse
Affiliation(s)
- Abhijay Jalota
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Marvin A Rossi
- Rush Epilepsy Center, Department of Neurological Sciences.,Department of Diagnostic Radiology and Nuclear Medicine; and
| | | | - Michael Stein
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Travis Stoub
- Rush Epilepsy Center, Department of Neurological Sciences
| | | | - Donna Bergen
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Adriana Bermeo
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Esmeralda Park
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Michael Smith
- Rush Epilepsy Center, Department of Neurological Sciences
| | - Richard Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
19
|
Kim J, Kim SH, Lim SC, Kim W, Shon YM. Clinical characteristics of patients with benign nonlesional temporal lobe epilepsy. Neuropsychiatr Dis Treat 2016; 12:1887-91. [PMID: 27555776 PMCID: PMC4968857 DOI: 10.2147/ndt.s110400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate the evolution of nonlesional temporal lobe epilepsy (TLE-NL) in patients treated exclusively with antiepileptic drugs and to elucidate clinical phenotypes related to the prognosis of these patients. METHODS Clinical, radiological, and electroencephalographic (EEG) findings in 84 patients with TLE-NL were reviewed. A good response group (GRG) and a poor response group (PRG) were defined if the duration of their seizure-free period was >1 year, or <1 year, respectively. RESULTS There were 46 (54.8%) patients in the GRG and 38 (45.2%) patients in the PRG. The number of antiepileptic drugs administered was significantly lower in the GRG than that in the PRG (1.3±0.8 vs 2.8±1.0, respectively; P<0.05). The GRG had a significantly older age of onset than the PRG and a lower occurrence of initial precipitating events, such as febrile seizures, central nervous system infection, and head trauma (P<0.05). The prevalence of EEG abnormality, presence of aura, generalized seizures, and automatism was less frequently observed in the GRG (P<0.05). Multivariate analysis showed that the presence of automatism and initial precipitating events were significantly associated with a poor prognosis (P<0.05). CONCLUSION In contrast to the commonly assumed intractability of TLE, we found that more than 54% of patients with TLE-NL achieved a long seizure-free period. Older age at onset of TLE-NL was associated with a better prognosis. However, the presence of automatism and initial precipitating events were related to a poor prognosis. Future prospective studies with a much larger population are warranted.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Neurology, Korea University Ansan Hospital, College of Medicine, Korea University, Ansan
| | - Seong Hoon Kim
- Department of Neurology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seocho-gu
| | - Sung Chul Lim
- Department of Neurology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seocho-gu
| | - Woojun Kim
- Department of Neurology, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seocho-gu
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Stylianou P, Hoffmann C, Blat I, Harnof S. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: Part 1 Structural neuroimaging. J Clin Neurosci 2015; 23:14-22. [PMID: 26362835 DOI: 10.1016/j.jocn.2015.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 11/19/2022]
Abstract
The objective of part one of this review is to present the structural neuroimaging techniques that are currently used to evaluate patients with temporal lobe epilepsy (TLE), and to discuss their potential to define patient eligibility for medial temporal lobe surgery. A PubMed query, using Medline and Embase, and subsequent review, was performed for all English language studies published after 1990, reporting neuroimaging methods for the evaluation of patients with TLE. The extracted data included demographic variables, population and study design, imaging methods, gold standard methods, imaging findings, surgical outcomes and conclusions. Overall, 56 papers were reviewed, including a total of 1517 patients. This review highlights the following structural neuroimaging techniques: MRI, diffusion-weighted imaging, tractography, electroencephalography and magnetoencephalography. The developments in neuroimaging during the last decades have led to remarkable improvements in surgical precision, postsurgical outcome, prognosis, and the rate of seizure control in patients with TLE. The use of multiple imaging methods provides improved outcomes, and further improvements will be possible with future studies of larger patient cohorts.
Collapse
Affiliation(s)
- Petros Stylianou
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel.
| | - Chen Hoffmann
- Department of Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ilan Blat
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel
| |
Collapse
|
21
|
Abstract
BACKGROUND Focal epilepsies are caused by a malfunction of nerve cells localised in one part of one cerebral hemisphere. In studies, estimates of the number of individuals with focal epilepsy who do not become seizure-free despite optimal drug therapy vary according to the age of the participants and which focal epilepsies are included, but have been reported as at least 20% and in some studies up to 70%. If the epileptogenic zone can be located surgical resection offers the chance of a cure with a corresponding increase in quality of life. OBJECTIVES The primary objective is to assess the overall outcome of epilepsy surgery according to evidence from randomised controlled trials.The secondary objectives are to assess the overall outcome of epilepsy surgery according to non-randomised evidence and to identify the factors that correlate to remission of seizures postoperatively. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialised Register (June 2013), the Cochrane Central Register of Controlled Trials (CENTRAL 2013, Issue 6), MEDLINE (Ovid) (2001 to 4 July 2013), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) for relevant trials up to 4 July 2013. SELECTION CRITERIA Eligible studies were randomised controlled trials (RCTs), cohort studies or case series, with either a prospective and/or retrospective design, including at least 30 participants, a well-defined population (age, sex, seizure type/frequency, duration of epilepsy, aetiology, magnetic resonance imaging (MRI) diagnosis, surgical findings), an MRI performed in at least 90% of cases and an expected duration of follow-up of at least one year, and reporting an outcome relating to postoperative seizure control. DATA COLLECTION AND ANALYSIS Three groups of two review authors independently screened all references for eligibility, assessed study quality and risk of bias, and extracted data. Outcomes were proportion of participants achieving a good outcome according to the presence or absence of each prognostic factor of interest. We intended to combine data with risk ratios (RR) and 95% confidence intervals. MAIN RESULTS We identified 177 studies (16,253 participants) investigating the outcome of surgery for epilepsy. Four studies were RCTs (including one that randomised participants to surgery or medical treatment). The risk of bias in the RCTs was unclear or high, limiting our confidence in the evidence that addressed the primary review objective. Most of the remaining 173 non-randomised studies had a retrospective design; they were of variable size, were conducted in a range of countries, recruited a wide demographic range of participants, used a wide range of surgical techniques and used different scales used to measure outcomes. We performed quality assessment using the Effective Public Health Practice Project (EPHPP) tool and determined that most studies provided moderate or weak evidence. For 29 studies reporting multivariate analyses we used the Quality in Prognostic Studies (QUIPS) tool and determined that very few studies were at low risk of bias across the domains.In terms of freedom from seizures, one RCT found surgery to be superior to medical treatment, two RCTs found no statistically significant difference between anterior temporal lobectomy (ATL) with or without corpus callosotomy or between 2.5 cm or 3.5 cm ATL resection, and one RCT found total hippocampectomy to be superior to partial hippocampectomy. We judged the evidence from the four RCTs to be of moderate to very low quality due to the lack of information reported about the randomised trial design and the restricted study populations.Of the 16,253 participants included in this review, 10,518 (65%) achieved a good outcome from surgery; this ranged across studies from 13.5% to 92.5%. Overall, we found the quality of data in relation to the recording of adverse events to be very poor.In total, 118 studies examined between one and eight prognostic factors in univariate analysis. We found the following prognostic factors to be associated with a better post-surgical seizure outcome: an abnormal pre-operative MRI, no use of intracranial monitoring, complete surgical resection, presence of mesial temporal sclerosis, concordance of pre-operative MRI and electroencephalography (EEG), history of febrile seizures, absence of focal cortical dysplasia/malformation of cortical development, presence of tumour, right-sided resection and presence of unilateral interictal spikes. We found no evidence that history of head injury, presence of encephalomalacia, presence of vascular malformation or presence of postoperative discharges were prognostic factors of outcome. We observed variability between studies for many of our analyses, likely due to the small study sizes with unbalanced group sizes, variation in the definition of seizure outcome, definition of the prognostic factor and the influence of the site of surgery, all of which we observed to be related to postoperative seizure outcome. Twenty-nine studies reported multivariable models of prognostic factors and the direction of association of factors with outcome was generally the same as found in the univariate analyses. However, due to the different multivariable analysis approaches and selective reporting of results, meaningful comparison of multivariate analysis with univariate meta-analysis is difficult. AUTHORS' CONCLUSIONS The study design issues and limited information presented in the included studies mean that our results provide limited evidence to aid patient selection for surgery and prediction of likely surgical outcome. Future research should be of high quality, have a prospective design, be appropriately powered and focus on specific issues related to diagnostic tools, the site-specific surgical approach and other issues such as the extent of resection. Prognostic factors related to the outcome of surgery should be investigated via multivariable statistical regression modelling, where variables are selected for modelling according to clinical relevance and all numerical results of the prognostic models are fully reported. Protocols should include pre- and postoperative measures of speech and language function, cognition and social functioning along with a mental state assessment. Journal editors should not accept papers where adverse events from a medical intervention are not recorded. Improvements in the development of cancer care over the past three to four decades have been achieved by answering well-defined questions through the conduct of focused RCTs in a step-wise fashion. The same approach to surgery for epilepsy is required.
Collapse
Affiliation(s)
- Siobhan West
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Hathersage Road, Manchester, UK, M13 0JH
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Burkholder DB, Sulc V, Hoffman EM, Cascino GD, Britton JW, So EL, Marsh WR, Meyer FB, Van Gompel JJ, Giannini C, Wass CT, Watson RE, Worrell GA. Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging-negative temporal lobe epilepsy surgery. JAMA Neurol 2014; 71:702-9. [PMID: 24781216 DOI: 10.1001/jamaneurol.2014.585] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IMPORTANCE Scalp electroencephalography (EEG) and intraoperative electrocorticography (ECoG) are routinely used in the evaluation of magnetic resonance imaging-negative temporal lobe epilepsy (TLE) undergoing standard anterior temporal lobectomy with amygdalohippocampectomy (ATL), but the utility of interictal epileptiform discharge (IED) identification and its role in outcome are poorly defined. OBJECTIVES To determine whether the following are associated with surgical outcomes in patients with magnetic resonance imaging-negative TLE who underwent standard ATL: (1) unilateral-only IEDs on preoperative scalp EEG; (2) complete resection of tissue generating IEDs on ECoG; (3) complete resection of opioid-induced IEDs recorded on ECoG; and (4) location of IEDs recorded on ECoG. DESIGN, SETTING, AND PARTICIPANTS Data were gathered through retrospective medical record review at a tertiary referral center. Adult and pediatric patients with TLE who underwent standard ATL between January 1, 1990, and October 15, 2010, were considered for inclusion. Inclusion criteria were magnetic resonance imaging-negative TLE, standard ECoG performed at the time of surgery, and a minimum follow-up of 12 months. Univariate analysis was performed using log-rank time-to-event analysis. Variables reaching significance with log-rank testing were further analyzed using Cox proportional hazards. MAIN OUTCOMES AND MEASURES Excellent or nonexcellent outcome at time of last follow-up. An excellent outcome was defined as Engel class I and a nonexcellent outcome as Engel classes II through IV. RESULTS Eighty-seven patients met inclusion criteria, with 48 (55%) achieving an excellent outcome following ATL. Unilateral IEDs on scalp EEG (P = .001) and complete resection of brain regions generating IEDs on baseline intraoperative ECoG (P = .02) were associated with excellent outcomes in univariate analysis. Both were associated with excellent outcomes when analyzed with Cox proportional hazards (unilateral-only IEDs, relative risk = 0.31 [95% CI, 0.16-0.64]; complete resection of IEDs on baseline ECoG, relative risk = 0.39 [95% CI, 0.20-0.76]). Overall, 25 of 35 patients (71%) with both unilateral-only IEDs and complete resection of baseline ECoG IEDs had an excellent outcome. CONCLUSIONS AND RELEVANCE Unilateral-only IEDs on preoperative scalp EEG and complete resection of IEDs on baseline ECoG are associated with better outcomes following standard ATL in magnetic resonance imaging-negative TLE. Prospective evaluation is needed to clarify the use of ECoG in tailoring temporal lobectomy.
Collapse
Affiliation(s)
| | - Vlastimil Sulc
- Department of Neurology, Mayo Clinic, Rochester, Minnesota2International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | | | | | | | - Elson L So
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - W Richard Marsh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | | | - C Thomas Wass
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota7Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Sainju RK, Wolf BJ, Bonilha L, Martz G. Relationship of number of seizures recorded on video-EEG to surgical outcome in refractory medial temporal lobe epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:694-9. [PMID: 22990726 DOI: 10.1590/s0004-282x2012000900009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/28/2012] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Surgical planning for refractory medial temporal lobe epilepsy (rMTLE) relies on seizure localization by ictal electroencephalography (EEG). Multiple factors impact the number of seizures recorded. We evaluated whether seizure freedom correlated to the number of seizures recorded, and the related factors. METHODS We collected data for 32 patients with rMTLE who underwent anterior temporal lobectomy. Primary analysis evaluated number of seizures captured as a predictor of surgical outcome. Subsequent analyses explored factors that may seizure number. RESULTS Number of seizures recorded did not predict seizure freedom. More seizures were recorded with more days of seizure occurrence (p<0.001), seizure clusters (p≤0.011) and poorly localized seizures (PLSz) (p=0.004). Regression modeling showed a trend for subjects with fewer recorded poorly localized seizures to have better surgical outcome (p=0.052). CONCLUSIONS Total number of recorded seizures does not predict surgical outcome. Patients with more PLSz may have worse outcome.
Collapse
Affiliation(s)
- Rup Kamal Sainju
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
24
|
Junna MR, Buechler R, Cohen-Gadol AA, Mandrekar J, Christianson T, Marsh WR, Meyer FB, Cascino GD. Prognostic importance of risk factors for temporal lobe epilepsy in patients undergoing surgical treatment. Mayo Clin Proc 2013; 88:332-6. [PMID: 23541008 DOI: 10.1016/j.mayocp.2013.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/19/2012] [Accepted: 01/14/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the prognostic importance of an identified putative underlying risk factor in patients undergoing surgery for intractable temporal lobe epilepsy (TLE). PATIENTS AND METHODS A retrospective study of 400 consecutive patients who underwent TLE surgery between December 21, 1987, and September 11, 1996, was performed. Demographic characteristics, history of remote symptomatic neurologic disease, preoperative evaluation, and postoperative outcome data were extracted. Individuals without any risk factors were considered controls. Magnetic resonance imaging findings were used to identify mesial temporal sclerosis (MTS) before surgery. Seizure outcome was classified by a modified Engel classification. RESULTS Two hundred eighty-one patients had a potential underlying etiology, and 143 patients had more than 1 risk factor. One hundred nineteen patients had no evidence of a putative symptomatic neurologic illness. There was a statistically significant association (P<.05) between the presence of MTS and a favorable operative outcome (odds ratio, 4.28; 95% CI, 2.67-6.87). A history of remote symptomatic neurologic disease was not of prognostic importance unless associated with the development of MTS. CONCLUSION These results indicate that the preoperative identification of MTS by neuroimaging is the most important predictor of a favorable operative outcome in patients with TLE. These findings may be useful in the identification and counseling of potential candidates for epilepsy surgery.
Collapse
Affiliation(s)
- Mithri R Junna
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pediatric temporal lobe epilepsy surgery: resection based on etiology and anatomical location. Adv Tech Stand Neurosurg 2012. [PMID: 23250838 DOI: 10.1007/978-3-7091-1360-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Advances in electrophysiological assessment with improved structural and functional neuroimaging have been very helpful in the use of surgery as a tool for drug-resistant epilepsy. Increasing interest in epilepsy surgery has had a major impact on adult patients; a refined evaluation process and new criteria for drug resistance combined with refined surgical techniques resulted in large surgical series in many centers. Pediatric surgery has lagged behind this evolution, possibly because of the diverse semiology and electrophysiology of pediatric epilepsy obscuring the focal nature of the seizures and frustrating the treatment of catastrophic epileptic syndromes specific to children. Unfortunately, refractory -epilepsy is more -devastating in children than in adults as it interferes with all aspects of neural development. Nevertheless, during the last few decades, the efforts of a small number of centers with encouraging results in pediatric epilepsy surgery have motivated pediatric neurologists to gain interest. Although well behind in the number of patients compared with that of adults, pediatric series are increasing exponentially. While temporal lobe epilepsy is the focus of interest in adults, with almost 70 % of resections in the temporal lobe, the pediatric epilepsy spectrum is different. Resective or functional surgery techniques devoted to resistant extratemporal epilepsy are the major improvements in pediatric epilepsy surgery. Temporal lobe epilepsy in adults has been studied extensively but only recently has begun to receive attention in children. Several aspects of temporal lobe epilepsy in childhood remain unclear or controversial in terms of seizure semiology and its pathology. This is reflected in the surgical treatment. Information on the major contributors to a favorable outcome, such as type or extent of resection, in terms of seizure control and morbidity is not available as in adult temporal lobe epilepsy. This chapter discusses the major discrepancies between adult and pediatric temporal lobe epilepsy and outlines the current concepts in surgical treatment. The resection strategy based on the different substrates at different locations in the temporal lobe causing seizures is emphasized with respect to available literature.
Collapse
|
26
|
Schneider F, Irene Wang Z, Alexopoulos AV, Almubarak S, Kakisaka Y, Jin K, Nair D, Mosher JC, Najm IM, Burgess RC. Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: Additional value and comparison with intracranial EEG. Epilepsia 2012; 54:359-69. [DOI: 10.1111/epi.12004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
|
28
|
Mueller CA, Scorzin J, von Lehe M, Fimmers R, Helmstaedter C, Zentner J, Lehmann TN, Meencke HJ, Schulze-Bonhage A, Schramm J. Seizure outcome 1 year after temporal lobe epilepsy: an analysis of MR volumetric and clinical parameters. Acta Neurochir (Wien) 2012; 154:1327-36. [PMID: 22722378 DOI: 10.1007/s00701-012-1407-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/24/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND The aim of this work was to determine predictors that may contribute to surgical success or failure. Relevant pre- and postoperative baseline data were analyzed, and temporal structures underwent a volumetric analysis. METHODS A total of 207 patients (107 female) underwent complete evaluation for epilepsy surgery. Prospectively collected data used for this analysis included the clinical and demographic data. Classic prognostic factors (e.g., gender, age at operation, age at epilepsy manifestation, duration of epilepsy, education, side of pathology, intracranial EEG recordings, secondarily generalized tonic-clonic seizures, etiological factors, histology) and a volumetric analysis of 12 temporal lobe subregions were used in a regression analysis to identify possible prognostic factors in surgery for TLE. Primary outcome measure was seizure freedom at 1 year and during the full first year expressed as class I in the ILAE outcome scale. RESULTS In the univariate analysis, we identified one negative predictor for a less favorable seizure outcome: intracranial EEG recordings (p = 0.010), hippocampal sclerosis as histological finding trended toward statistical significance (p = 0.054). No statistical outcome significance was found for preoperative temporal lobe compartment volume loss or postoperative lateral atrophy after mesial resection. CONCLUSIONS Necessity for intracranial EEG recording is an independent factor of not optimal seizure control in the 1-year follow-up. Preoperative temporal lobe volume differences including smaller mesial subcompartments did not correlate with poorer seizure outcome.
Collapse
|
29
|
Schneider F, Alexopoulos AV, Wang Z, Almubarak S, Kakisaka Y, Jin K, Nair D, Mosher JC, Najm IM, Burgess RC. Magnetic source imaging in non-lesional neocortical epilepsy: additional value and comparison with ICEEG. Epilepsy Behav 2012; 24:234-40. [PMID: 22542998 DOI: 10.1016/j.yebeh.2012.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the utility of magnetic source imaging (MSI) for localizing the epileptogenic zone (EZ) and predicting epilepsy surgery outcome in non-lesional neocortical focal epilepsy (NLNE) patients. METHODS Data from 18 consecutive patients with NLNE who underwent presurgical evaluation including intracranial electroencephalography (ICEEG) and MSI were studied. Follow-up after epilepsy surgery was ≥24 months. Intracranial electroencephalography and MSI results were classified using a sublobar classification. RESULTS Sublobar ICEEG focus was completely resected in 15 patients; seizure-free rate was 60%. Eight patients showed sublobar-concordant ICEEG/MSI results and complete resection of both regions; seizure-free rate was 87.5%. Seizure-free rate in cases not matching these criteria was only 30% (p=0.013). CONCLUSIONS Magnetoencephalography is a useful tool to localize the EZ and determine the site of surgical resection in NLNE patients. When sublobar concordance with ICEEG is observed, MSI increases the predictive value for a seizure-free epilepsy surgery outcome in these patients.
Collapse
Affiliation(s)
- Felix Schneider
- Cleveland Clinic Epilepsy Center, Neurological Institute, 9500 Euclid Avenue, Desk S-51, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Manuel G Campos
- Department of Neurosurgery, Clinica Las Condes, Santiago, Chile.
| |
Collapse
|
31
|
Fong JS, Jehi L, Najm I, Prayson RA, Busch R, Bingaman W. Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI. Epilepsia 2011; 52:1393-401. [DOI: 10.1111/j.1528-1167.2011.03091.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Is Temporal Lobe Epilepsy with childhood febrile seizures a distinctive entity? A comparative study. Seizure 2011; 20:163-6. [DOI: 10.1016/j.seizure.2010.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022] Open
|
33
|
Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res 2010; 89:310-8. [PMID: 20227852 DOI: 10.1016/j.eplepsyres.2010.02.007] [Citation(s) in RCA: 481] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 01/05/2010] [Accepted: 02/13/2010] [Indexed: 11/21/2022]
Abstract
PURPOSES To provide evidence-based quantitative summary estimates of seizure outcomes in patients with non-lesional and lesional epilepsy treated with surgery, and to assess the consistency of results among published studies. METHODS An exhaustive literature search identified articles published since 1995, describing outcomes according to lesional status in patients of any age who underwent resective epilepsy surgery. Two reviewers independently assessed study eligibility and extracted the data. Disagreements were resolved through discussion. Random effects meta-analyses were used after assessing the dataset for heterogeneity. RESULTS Forty articles fulfilled eligibility criteria and described outcomes in 697 patients with non-lesional epilepsy and 2860 patients with lesional epilepsy. Overall, the odds of being seizure-free after surgery were 2.5 times higher in patients with lesions on MRI or histopathology (OR 2.5, 95%CI 2.1, 3.0, p<0.001). In patients with temporal lobe epilepsy surgery the odds were 2.7 times higher in those with lesions (OR 2.7, 95%CI 2.1, 3.5, p<0.001). In patients with extratemporal epilepsy surgery the odds were 2.9 higher in those with lesions (OR 2.9, 95%CI 1.6, 5.1, p<0.001). Outcomes were similar in children, adults, and studies that used MRI or histopathology to identify lesions. DISCUSSION Overall, the odds of seizure freedom after surgery are two to three times higher in the presence of a lesion on histopathology or MRI. The results are clinically and statistically significant, consistent across various subgroups, and quite homogeneous across studies.
Collapse
|
34
|
Heuser K, Nagelhus EA, Taubøll E, Indahl U, Berg PR, Lien S, Nakken S, Gjerstad L, Ottersen OP. Variants of the genes encoding AQP4 and Kir4.1 are associated with subgroups of patients with temporal lobe epilepsy. Epilepsy Res 2009; 88:55-64. [PMID: 19864112 DOI: 10.1016/j.eplepsyres.2009.09.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/09/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The etiopathogenesis of temporal lobe epilepsy (TLE) and its subgroups - mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and TLE with antecedent febrile seizures (TLE-FS) - is poorly understood. It has been proposed that the water channel aquaporin-4 (AQP4) and the potassium channel Kir4.1 (KCNJ10 gene) act in concert to regulate extracellular K(+) homeostasis and that functional alterations of these channels influence neuronal excitability. The current study was designed to identify variants of the AQP4 and KCNJ10 genes associated with TLE and subgroups of this condition. MATERIAL AND METHODS We included 218 Norwegian patients with TLE and 181 ethnically matched healthy controls. An association study was established in which all TLE patients were compared with healthy controls. Additionally, subgroups of 56 MTLE-HS patients were compared with 162 TLE patients without HS, and 102 TLE-FS patients were compared with 105 TLE without FS. RESULTS We found eight single SNPs, seven in KCNJ10 and one between KCNJ10 and KCNJ9, associated with TLE-FS (nominal p-values from 0.009 to 0.041). Seven of the SNPs segregate into one large haplotype block expanding from KCNJ10 to KCNJ9, including the region interposed those genes. One haplotype was overrepresented in the TLE-FS cases (nominal p-value 0.014). These results were confirmed by explorative multivariate analysis indicating that a combination of SNPs from KCNJ10, the region between KCNJ10 and KCNJ9, and the AQP4 gene is associated with TLE-FS. For the TLE cohort as a whole, explorative multivariate analysis indicated a combination of SNPs from the KCNJ10 and AQP4 genes in association with TLE. CONCLUSION Variations in the AQP4 and the KCNJ10/KCNJ9 region are likely to be associated with TLE, particularly TLE-FS, supporting the suggestion that perturbations of water and K(+) transport are involved in the etiopathogenesis of TLE.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heuser K, Taubøll E, Nagelhus EA, Cvancarova M, Petter Ottersen O, Gjerstad L. Phenotypic characteristics of temporal lobe epilepsy: the impact of hippocampal sclerosis. Acta Neurol Scand 2009:8-13. [PMID: 19566491 DOI: 10.1111/j.1600-0404.2009.01205.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Whether mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a condition with a unique biological background that can be delineated from other TLE, is unresolved. Here we performed a comparative analysis of two TLE patient cohorts - one cohort with HS and one without HS - in order to identify phenotypic characteristics specifically associated with MTLE-HS. METHODS Epidemiological data and clinical and diagnostic features were compared between patients with MTLE-HS and TLE patients without HS. When appropriate, data were compared with healthy controls. RESULTS Fifty-six (26%) patients were diagnosed with MTLE-HS and 162 (74%) with other TLE. Age at epilepsy onset was lower in patients with MTLE-HS (P = 0.003) than in TLE patients without HS. Incidence of simple partial seizures was higher in the MTLE-HS group (P = 0.006), as were complex partial seizures (P = 0.001), ictal psychiatric symptoms (P = 0.015), and autonomic symptoms (P < 0.001). Interictal psychiatric symptoms, including depression, were less frequent in MTLE-HS (P = 0.043). MTLE-HS patients had a higher incidence of childhood febrile seizures (FS; P = 0.043) than TLE patients without HS. In contrast, the former group had the lower frequency of first-grade family members with childhood FS (P = 0.019). CONCLUSIONS We identified phenotypic characteristics that distinguish MTLE-HS from other types of TLE. These characteristics will be important in diagnostics, treatment, and determination of prognosis, and provide a basis for future phenotype-genotype studies.
Collapse
Affiliation(s)
- K Heuser
- Department of Neurology, Division for Clinical Neuroscience, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
36
|
|