1
|
Di Luca DG, Reyes NGD, Fox SH. Newly Approved and Investigational Drugs for Motor Symptom Control in Parkinson's Disease. Drugs 2022; 82:1027-1053. [PMID: 35841520 PMCID: PMC9287529 DOI: 10.1007/s40265-022-01747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Motor symptoms are a core feature of Parkinson's disease (PD) and cause a significant burden on patients' quality of life. Oral levodopa is still the most effective treatment, however, the motor benefits are countered by inherent pharmacologic limitations of the drug. Additionally, with disease progression, chronic levodopa leads to the appearance of motor complications including motor fluctuations and dyskinesia. Furthermore, several motor abnormalities of posture, balance, and gait may become less responsive to levodopa. With these unmet needs and our evolving understanding of the neuroanatomic and pathophysiologic underpinnings of PD, several advances have been made in defining new therapies for motor symptoms. These include newer levodopa formulations and drug delivery systems, refinements in adjunctive medications, and non-dopaminergic treatment strategies. Although some are in early stages of development, these novel treatments potentially widen the available options for the management of motor symptoms allowing clinicians to provide an individually tailored care for PD patients. Here, we review the existing and emerging interventions for PD with focus on newly approved and investigational drugs for motor symptoms, motor fluctuations, dyskinesia, and balance and gait dysfunction.
Collapse
Affiliation(s)
- Daniel Garbin Di Luca
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - Nikolai Gil D. Reyes
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| | - Susan H. Fox
- Edmond J. Safra Program in Parkinson’s Disease, Movement Disorders Clinic, Krembil Brain Institute, Toronto Western Hospital, Toronto, ON Canada
| |
Collapse
|
2
|
Kapur S, Vaughan C, Hawkins J, Stebbins G, Hall D. Varenicline for the Treatment of Postural and Gait Dysfunction in Parkinson Disease. Neurol Clin Pract 2021; 11:457-461. [PMID: 34992953 DOI: 10.1212/cpj.0000000000000958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine whether varenicline is effective for the balance in Parkinson disease (PD). METHODS This was an investigator-initiated, double-blind, placebo-controlled study. Participants with a clinical diagnosis of PD were randomized to receive varenicline or placebo for 8 weeks. After dose escalation, participants took 1 mg of drug twice daily until the end of the study. Patients with severe tremor were excluded. Primary outcome was a change on the Berg Balance Scale (BBS) from baseline to 8 weeks. The BBS is a 14-item measure consisting of basic balance tasks. The study had a secondary, exploratory outcome of a change in cognition, measured with the Frontal Assessment Battery (FAB) and the Mini-Mental State Exam (MMSE) from baseline to 8 weeks. The FAB is a 6-item measure of executive functioning. RESULTS Thirty-six participants were randomized (82% men, 100% White). Average age was 71.0 years (± 8.1). Average baseline motor Movement Disorder Society Unified Parkinson's Disease Rating Scale was 34.7 (± 11.6). There were no differences between treatment groups on the BBS (F[1,28] = 2.85, p = 0.10) or FAB (d = 0.16, 95% confidence interval [CI] = [-1.39 to 1.53]) or MMSE (d = 0.81, 95% CI = [-0.40 to 1.40]). CONCLUSION The results did not suggest that varenicline had an effect on balance in patients with PD. Furthermore, varenicline did not seem to affect cognition. Perhaps, if an objective measure of balance had been used in place of the BBS, the analysis would show a difference between the groups. However, the authors do not recommend further study. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that in patients with PD with Hoehn and Yahr stages 2, 3, or 4, varenicline does not improve balance as assessed by the BBS.
Collapse
Affiliation(s)
- Sachin Kapur
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Christina Vaughan
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Jacob Hawkins
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| | - Deborah Hall
- Department of Neurological Sciences, Rush University, Department of Neurological Sciences, Chicago, IL
| |
Collapse
|
3
|
Verma AK, Khan E, Bhagwat SR, Kumar A. Exploring the Potential of Small Molecule-Based Therapeutic Approaches for Targeting Trinucleotide Repeat Disorders. Mol Neurobiol 2019; 57:566-584. [DOI: 10.1007/s12035-019-01724-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
|
4
|
Quik M, Boyd JT, Bordia T, Perez X. Potential Therapeutic Application for Nicotinic Receptor Drugs in Movement Disorders. Nicotine Tob Res 2019; 21:357-369. [PMID: 30137517 PMCID: PMC6379038 DOI: 10.1093/ntr/nty063] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Emerging studies indicate that striatal cholinergic interneurons play an important role in synaptic plasticity and motor control under normal physiological conditions, while their disruption may lead to movement disorders. Here we discuss the involvement of the cholinergic system in motor dysfunction, with a focus on the role of the nicotinic cholinergic system in Parkinson's disease and drug-induced dyskinesias. Evidence for a role for the striatal nicotinic cholinergic system stems from studies showing that administration of nicotine or nicotinic receptor drugs protects against nigrostriatal degeneration and decreases L-dopa-induced dyskinesias. In addition, nicotinic receptor drugs may ameliorate tardive dyskinesia, Tourette's syndrome and ataxia, although further study is required to understand their full potential in the treatment of these disorders. A role for the striatal muscarinic cholinergic system in movement disorders stems from studies showing that muscarinic receptor drugs acutely improve Parkinson's disease motor symptoms, and may reduce dyskinesias and dystonia. Selective stimulation or lesioning of striatal cholinergic interneurons suggests they are primary players in this regulation, although multiple central nervous systems appear to be involved. IMPLICATIONS Accumulating data from preclinical studies and clinical trials suggest that drugs targeting CNS cholinergic systems may be useful for symptomatic treatment of movement disorders. Nicotinic cholinergic drugs, including nicotine and selective nAChR receptor agonists, reduce L-dopa-induced dyskinesias, as well as antipsychotic-induced tardive dyskinesia, and may be useful in Tourette's syndrome and ataxia. Subtype selective muscarinic cholinergic drugs may also provide effective therapies for Parkinson's disease, dyskinesias and dystonia. Continued studies/trials will help address this important issue.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - James T Boyd
- University of Vermont Medical Center Neurology, Burlington, VT
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Xiomara Perez
- Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
5
|
Charvin D, Medori R, Hauser RA, Rascol O. Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov 2018; 17:804-822. [PMID: 30262889 DOI: 10.1038/nrd.2018.136] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Existing therapeutic strategies for managing Parkinson disease (PD), which focus on addressing the loss of dopamine and dopaminergic function linked with degeneration of dopaminergic neurons, are limited by side effects and lack of long-term efficacy. In recent decades, research into PD pathophysiology and pharmacology has focused on understanding and tackling the neurodegenerative processes and symptomology of PD. In this Review, we discuss the challenges associated with the development of novel therapies for PD, highlighting emerging agents that aim to target cell death, as well as new targets offering a symptomatic approach to managing features and progression of the disease.
Collapse
Affiliation(s)
| | | | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Olivier Rascol
- Centre d'Investigation Clinique CIC1436, Services de Neurologie et de Pharmacologie Clinique, Réseau NS-PARK/FCRIN et Centre COEN NeuroToul, CHU de Toulouse, INSERM, University of Toulouse 3, Toulouse, France
| |
Collapse
|
6
|
Duarte-Silva S, Maciel P. Pharmacological Therapies for Machado-Joseph Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:369-394. [PMID: 29427114 DOI: 10.1007/978-3-319-71779-1_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3 (SCA3), is the most common autosomal dominant ataxia worldwide. MJD integrates a large group of disorders known as polyglutamine diseases (polyQ). To date, no effective treatment exists for MJD and other polyQ diseases. Nevertheless, researchers are making efforts to find treatment possibilities that modify the disease course or alleviate disease symptoms. Since neuroimaging studies in mutation carrying individuals suggest that in nervous system dysfunction begins many years before the onset of any detectable symptoms, the development of therapeutic interventions becomes of great importance, not only to slow progression of manifest disease but also to delay, or ideally prevent, its onset. Potential therapeutic targets for MJD and polyQ diseases can be divided into (i) those that are aimed at the polyQ proteins themselves, namely gene silencing, attempts to enhance mutant protein degradation or inhibition/prevention of aggregation; and (ii) those that intercept the toxic downstream effects of the polyQ proteins, such as mitochondrial dysfunction and oxidative stress, transcriptional abnormalities, UPS impairment, excitotoxicity, or activation of cell death. The existence of relevant animal models and the recent contributions towards the identification of putative molecular mechanisms underlying MJD are impacting on the development of new drugs. To date only a few preclinical trials were conducted, nevertheless some had very promising results and some candidate drugs are close to being tested in humans. Clinical trials for MJD are also very few to date and their results not very promising, mostly due to trial design constraints. Here, we provide an overview of the pharmacological therapeutic strategies for MJD studied in animal models and patients, and of their possible translation into the clinical practice.
Collapse
Affiliation(s)
- Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Quik M, Zhang D, Perez XA, Bordia T. Role for the nicotinic cholinergic system in movement disorders; therapeutic implications. Pharmacol Ther 2014; 144:50-9. [PMID: 24836728 DOI: 10.1016/j.pharmthera.2014.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 01/04/2023]
Abstract
A large body of evidence using experimental animal models shows that the nicotinic cholinergic system is involved in the control of movement under physiological conditions. This work raised the question whether dysregulation of this system may contribute to motor dysfunction and whether drugs targeting nicotinic acetylcholine receptors (nAChRs) may be of therapeutic benefit in movement disorders. Accumulating preclinical studies now show that drugs acting at nAChRs improve drug-induced dyskinesias. The general nAChR agonist nicotine, as well as several nAChR agonists (varenicline, ABT-089 and ABT-894), reduces l-dopa-induced abnormal involuntary movements or dyskinesias up to 60% in parkinsonian nonhuman primates and rodents. These dyskinesias are potentially debilitating abnormal involuntary movements that arise as a complication of l-dopa therapy for Parkinson's disease. In addition, nicotine and varenicline decrease antipsychotic-induced abnormal involuntary movements in rodent models of tardive dyskinesia. Antipsychotic-induced dyskinesias frequently arise as a side effect of chronic drug treatment for schizophrenia, psychosis and other psychiatric disorders. Preclinical and clinical studies also show that the nAChR agonist varenicline improves balance and coordination in various ataxias. Lastly, nicotine has been reported to attenuate the dyskinetic symptoms of Tourette's disorder. Several nAChR subtypes appear to be involved in these beneficial effects of nicotine and nAChR drugs including α4β2*, α6β2* and α7 nAChRs (the asterisk indicates the possible presence of other subunits in the receptor). Overall, the above findings, coupled with nicotine's neuroprotective effects, suggest that nAChR drugs have potential for future drug development for movement disorders.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
van de Warrenburg BPC, van Gaalen J, Boesch S, Burgunder JM, Dürr A, Giunti P, Klockgether T, Mariotti C, Pandolfo M, Riess O. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 2014; 21:552-62. [PMID: 24418350 DOI: 10.1111/ene.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The ataxias are a challenging group of neurological diseases due the aetiological heterogeneity and the complexity of the genetic subtypes. This guideline focuses on the heredodegenerative ataxias. The aim is to provide a peer-reviewed evidence-based guideline for clinical neurologists and other specialist physicians responsible for the care of patients with ataxia. METHODS This guideline is based on systematic evaluations of the relevant literature and on three consensus meetings of the task force. DIAGNOSIS If acquired causes are ruled out, and if the disease course is rather slowly progressive, a (heredo)degenerative disease is likely. A positive family history gives much guidance. In the case of a dominant family history, first line genetic screening is recommended for spinocerebellar ataxia (SCA) 1, 2, 3, 6, 7 and 17 (level B), and in Asian patients also for dentatorubral-pallidoluysian atrophy (DRPLA). In the case of recessive disease, a stepwise diagnostic work-up is recommended, including both biochemical markers and targeted genetic testing, particularly aimed at Friedreich's ataxia, ataxia telangiectasia, ataxia due to vitamin E deficiency, polymerase gamma gene (POLG gene, various mutations), autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and ataxia with oculomotor apraxia (AOA) types 1 and 2. If family history is negative, we still advise to screen for the more common dominant and recessive ataxias. In addition, if onset is below 45 years we recommend the full work-up for recessive ataxias; if onset is above 45 years we recommend to screen for fragile X mental retardation 1 FMR1 premutations (good practice points). In sporadic cases with an onset after 30 years, a diagnosis of multiple system atrophy should be considered (good practice point). In particular the genetic work-up will change over the upcoming years due to the diagnostic utility of new techniques such as gene panel diagnostics based on next generation sequencing for routine work-up, or even whole exome and genome sequencing for selected cases. TREATMENT Some of the rare recessive ataxias are treatable, but for most of the heredodegenerative ataxias treatment is purely symptomatic. Idebenone is not effective in Friedreich's ataxia (level A). Riluzole (level B) and amantadine (level C) might provide symptomatic relief, irrespective of exact etiology. Also, varenicline for SCA3 patients (level B) can be considered. There is level Class II evidence to recommend physiotherapy, and Class III data to support occupational therapy.
Collapse
Affiliation(s)
- B P C van de Warrenburg
- Department of Neurology, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lambert C, Philpot R, Engberg M, Wecker L. Varenicline ameliorates spatial and temporal gait deficits following 3-acetylpyridine-induced ataxia in rats. Biochem Pharmacol 2013. [DOI: 10.1016/j.bcp.2013.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Müller MLTM, Albin RL, Kotagal V, Koeppe RA, Scott PJH, Frey KA, Bohnen NI. Thalamic cholinergic innervation and postural sensory integration function in Parkinson's disease. ACTA ACUST UNITED AC 2013; 136:3282-9. [PMID: 24056537 DOI: 10.1093/brain/awt247] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pathophysiology of postural instability in Parkinson's disease remains poorly understood. Normal postural function depends in part on the ability of the postural control system to integrate visual, proprioceptive, and vestibular sensory information. Degeneration of cholinergic neurons in the brainstem pedunculopontine nucleus complex and their thalamic efferent terminals has been implicated in postural control deficits in Parkinson's disease. Our aim was to investigate the relationship of cholinergic terminal loss in thalamus and cortex, and nigrostriatal dopaminergic denervation, on postural sensory integration function in Parkinson's disease. We studied 124 subjects with Parkinson's disease (32 female/92 male; 65.5 ± 7.4 years old; 6.0 ± 4.2 years motor disease duration; modified Hoehn and Yahr mean stage 2.4 ± 0.5) and 25 control subjects (10 female/15 male, 66.8 ± 10.1 years old). All subjects underwent (11)C-dihydrotetrabenazine vesicular monoaminergic transporter type 2 and (11)C-methylpiperidin-4-yl propionate acetylcholinesterase positron emission tomography and the sensory organization test balance platform protocol. Measures of dopaminergic and cholinergic terminal integrity were obtained, i.e. striatal vesicular monoaminergic transporter type 2 binding (distribution volume ratio) and thalamic and cortical acetylcholinesterase hydrolysis rate per minute (k3), respectively. Total centre of pressure excursion (speed), a measure of total sway, and sway variability were determined for individual sensory organization test conditions. Based on normative data, principal component analysis was performed to reduce postural sensory organization functions to robust factors for regression analysis with the dopaminergic and cholinergic terminal data. Factor analysis demonstrated two factors with eigenvalues >2 that explained 52.2% of the variance, mainly reflecting postural sway during sensory organization test Conditions 1-3 and 5, respectively. Regression analysis of the Conditions 1-3 postural sway-related factor [R(2)adj = 0.123, F(5,109) = 4.2, P = 0.002] showed that decreased thalamic cholinergic innervation was associated with increased centre of pressure sway speed (β = -0.389, t = -3.4, P = 0.001) while controlling for covariate effects of cognitive capacity and parkinsonian motor impairments. There was no significant effect of cortical cholinergic terminal deficits or striatal dopaminergic terminal deficits. This effect could only be found for the subjects with Parkinson's disease. We conclude that postural sensory integration function of subjects with Parkinson's disease is modulated by pedunculopontine nucleus-thalamic but not cortical cholinergic innervation. Impaired integrity of pedunculopontine nucleus cholinergic neurons and their thalamic efferents play a role in postural control in patients with Parkinson's disease, possibly by participating in integration of multimodal sensory input information.
Collapse
|
11
|
Wecker L, Engberg ME, Philpot RM, Lambert CS, Kang CW, Antilla JC, Bickford PC, Hudson CE, Zesiewicz TA, Rowell PP. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology 2013; 73:75-86. [PMID: 23711550 DOI: 10.1016/j.neuropharm.2013.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022]
Abstract
Clinical studies have reported that the nicotinic receptor agonist varenicline improves balance and coordination in patients with several types of ataxia, but confirmation in an animal model has not been demonstrated. This study investigated whether varenicline and nicotine could attenuate the ataxia induced in rats following destruction of the olivocerebellar pathway by the neurotoxin 3-acetylpyridine (3-AP). The administration of 3-AP (70 mg/kg followed by 300 mg niacinamide/kg; i.p.) led to an 85% loss of inferior olivary neurons within one week without evidence of recovery, and was accompanied by a 72% decrease in rotorod activity, a 3-fold increase in the time to traverse a stationary beam, a 19% decrease in velocity and 31% decrease in distance moved in the open field, and alterations in gait parameters, with a 19% increase in hindpaw stride width. The daily administration of nicotine (0.33 mg free base/kg) for one week improved rotorod performance by 50% and normalized the increased hindpaw stride width, effects that were prevented by the daily preadministration of the nicotinic antagonist mecamylamine (0.8 mg free base/kg). Varenicline (1 and 3 mg free base/kg daily) also improved rotorod performance by approximately 50% following one week of administration, and although it did not alter the time to traverse the beam, it did improve the ability to maintain balance on the beam. Neither varenicline nor nicotine, at doses that improved balance, affected impaired locomotor activity in the open field. Results provide evidence that nicotinic agonists are of benefit for alleviating some of the behavioral deficits in olivocerebellar ataxia and warrant further studies to elucidate the specific mechanism(s) involved.
Collapse
Affiliation(s)
- L Wecker
- Laboratory of Neuropsychopharmacology, Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL 33613-4706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
This article summarizes the clinical findings, genetics, pathophysiology, and treatment of fragile X-associated tremor ataxia syndrome. The disorder occurs from a CGG repeat (55-200) expansion in the fragile X mental retardation 1 gene. It manifests clinically in kinetic tremor, gait ataxia, and executive dysfunction, usually in older men who carry the genetic abnormality. The disorder has distinct radiographic and pathologic findings. Symptomatic treatment is beneficial in some patients. The inheritance is X-linked and family members may be at risk for other fragile X-associated disorders. This information is useful to neurologists, general practitioners, and geneticists.
Collapse
|
13
|
Hall DA, O'keefe JA. Fragile x-associated tremor ataxia syndrome: the expanding clinical picture, pathophysiology, epidemiology, and update on treatment. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439567 PMCID: PMC3570061 DOI: 10.7916/d8hd7tds] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive degenerative movement disorder characterized by kinetic tremor, cerebellar gait ataxia, parkinsonism, and cognitive decline. This disorder occurs in both males and females, frequently in families with children who have fragile X syndrome. The clinical features of this disorder, both classic and newly described, are summarized in this paper. In screening studies, fragile X mental retardation 1 (FMR1) gene premutation (55–200 CGG) expansions are most frequently seen in men with ataxia who have tested negative for spinocerebellar ataxias. Since the original description, the classic FXTAS phenotype has now been reported in females and in carriers of smaller (45–54 CGG) and larger (>200 CGG) expansions in FMR1. Premutation carriers may present with a Parkinson disease phenotype or hypotension, rather than with tremor and/or ataxia. Parkinsonism and gait ataxia may also be seen in individuals with gray zone (41–54 CGG) expansions. Studies regarding medication to treat the symptoms in FXTAS are few in number and suggest that medications targeted to specific symptoms, such as kinetic tremor or gait ataxia, may be most beneficial. Great progress has been made in regards to FXTAS research, likely given the readily available gene test and the screening of multiple family members, including parents and grandparents, of fragile X syndrome children. Expansion of genotypes and phenotypes in the disorder may suggest that a broader disease definition might be necessary in the future.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, Illinois, United States of America
| | | |
Collapse
|
14
|
Louis ED, Rao AK, Gerbin M. Functional correlates of gait and balance difficulty in essential tremor: balance confidence, near misses and falls. Gait Posture 2012; 35:43-7. [PMID: 21930384 PMCID: PMC3244510 DOI: 10.1016/j.gaitpost.2011.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Although a mild objective abnormality of gait and balance has been observed in essential tremor (ET) cases in research settings, the clinical significance of this finding for patients is far from clear. In this study, we assessed whether ET patients subjectively experience more gait difficulty, more falls or near misses than controls. METHODS Activities-specific Balance Confidence (ABC) scores were obtained in 59 ET cases (15 with head tremor and 44 without head tremor) and 82 controls enrolled in a clinical-epidemiological study. RESULTS ABC scores were lower in ET cases than controls (61.8 ± 27.7 vs. 70.3 ± 28.1, p=0.035) of similar age (71.2 ± 14.6 years vs. 71. 6 ± 0.8 years), indicating significantly lower balance confidence in cases. The lowest scores (51.4 ± 26.9) were observed in cases with head tremor (p=0.02). Near misses in the past year were the highest in cases with head tremor (67.3 ± 112.1) and lowest in controls (6.1 ± 33.3, p=0.008). The proportion who had had ≥ 5 near misses or falls in the past year was 11 (13.4%) for controls, 8 (18.2%) for cases without head tremor and 6 (40.0%) for cases with head tremor (p=0.048). For the ABC score, we created a receiver operating curve (ROC) curve and optimal cut-off score to differentiate between our two most different groups, namely, ET with head tremor and controls. Using this cut-off (≤ 67), sensitivity and specificity were moderate. CONCLUSIONS ET patients experience a loss of confidence in balance. The subgroup of patients with head tremor experienced the most gait and balance difficulty, with nearly one-in-two having had multiple near misses or falls during the previous year.
Collapse
Affiliation(s)
- Elan D. Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ashwini K. Rao
- Program in Physical Therapy, Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA
| | - Marina Gerbin
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an under-recognized disorder that is a significant cause of late-adult-onset ataxia. The etiology is expansion of a trinucleotide repeat to the premutation range (55-200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene. Expansion to >200 CGGs causes fragile X syndrome, the most common heritable cause of cognitive impairment and autism. Core features of FXTAS include progressive action tremor and gait ataxia; with frequent, more variable features of cognitive decline, especially executive dysfunction, parkinsonism, neuropathy, and autonomic dysfunction. MR imaging shows generalized atrophy and frequently abnormal signal in the middle cerebellar peduncles. Autopsy reveals intranuclear inclusions in neurons and astrocytes and dystrophic white matter. FXTAS is likely due to an RNA toxic gain-of-function of the expanded-repeat mRNA. The disorder typically affects male premutation carriers over age 50, and, less often, females. Females also are at increased risk for primary ovarian insufficiency, chronic muscle pain, and thyroid disease. Treatment targets specific symptoms, but progression of disability is relentless. Although the contribution of FXTAS to the morbidity and mortality of the aging population requires further study, the disorder is likely the most common single-gene form of tremor and ataxia in the older adult population.
Collapse
Affiliation(s)
- Maureen A Leehey
- Department of Neurology, University of Colorado at Denver Health Sciences Center, Denver, CO, USA.
| | | |
Collapse
|
16
|
Perlman SL. Treatment and management issues in ataxic diseases. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:635-54. [PMID: 21827924 DOI: 10.1016/b978-0-444-51892-7.00046-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Susan L Perlman
- David Geffen School of Medicine at the University of California at Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Leehey MA. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med 2011; 57:830-6. [PMID: 19574929 DOI: 10.2310/jim.0b013e3181af59c4] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG repeat expansion in the premutation range (55-200) in the fragile X mental retardation 1 gene. Onset is typically in the early seventh decade, and men are principally affected. The major signs are cerebellar gait ataxia, intention tremor, frontal executive dysfunction, and global brain atrophy. Other frequent findings are parkinsonism (mild), peripheral neuropathy, psychiatric symptoms (depression, anxiety, and agitation), and autonomic dysfunction. The clinical presentation is heterogeneous, with individuals presenting with varied dominating signs, such as tremor, dementia, or neuropathy. Magnetic resonance imaging shows atrophy and patchy white matter lesions in the cerebral hemispheres and middle cerebellar peduncles. The latter has been designated the middle cerebellar peduncle sign, which occurs in about 60% of affected men, and is relatively specific for FXTAS. Affected females generally have less severe disease, less cognitive decline, and some symptoms different from that of men, for example, muscle pain. Management of FXTAS is complex and includes assessment of the patient's neurological and medical deficits, treatment of symptoms, and provision of relevant referrals, especially genetic counseling. Treatment is empirical, based on anecdotal experience and on knowledge of what works for symptoms of other disorders that also exist in FXTAS. Presently, the disorder is underrecognized because the first published report was only in 2001 and because the presentation is variable and mainly consists of a combination of signs common in the elderly. However, accurate diagnosis is critical for the patient and for the family because they need education regarding their genetic and health risks.
Collapse
Affiliation(s)
- Maureen A Leehey
- Department of Neurology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Revuelta GJ, Wilmot GR. Therapeutic Interventions in the Primary Hereditary Ataxias. Curr Treat Options Neurol 2010; 12:257-73. [DOI: 10.1007/s11940-010-0075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 2010; 9:613-22. [PMID: 20451458 DOI: 10.1016/s1474-4422(10)70090-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Essential tremor (ET) is one of the most common neurological disorders. In recent years, as a result of systematic post-mortem examinations, our knowledge of the pathophysiology of this disease has grown substantially. Clearly identifiable structural changes (ie, Purkinje cell loss, Lewy bodies) have been observed in the brains of individuals with ET. These changes are not uniform and seem to follow several patterns, localising to the cerebellum itself or to a collection of brainstem neurons that synapse directly with Purkinje cells. Furthermore, these changes are similar to those seen in degenerative diseases. A wealth of clinical, epidemiological, and now post-mortem data indicate that this disease, or perhaps this family of diseases, is likely to be neurodegenerative. The molecular mechanisms that underlie these structural changes in ET are unknown. However, with more controlled, tissue-based studies being done, it is hoped that these mechanisms will be elucidated, thereby laying the foundation for the development of more targeted, effective pharmacotherapeutic interventions.
Collapse
|