1
|
Zhukovsky C, Herman S, Wiberg A, Cunningham JL, Kultima K, Burman J. Urokinase, CX3CL1, CCL2, TRAIL and IL-18 induced by interferon-β treatment. Acta Neurol Scand 2021; 143:602-607. [PMID: 33626181 DOI: 10.1111/ane.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To identify serum proteins associated with MS and affected by interferon beta treatment. METHODS Plasma samples from 29 untreated relapsing-remitting MS patients and 15 healthy controls were investigated with a multiplexed panel containing 92 proteins related to inflammation. Follow-up samples were available from 13 patients at 1 and 3 months after initiation of treatment with interferon beta-1a. RESULTS Ten proteins were differentially expressed in MS patients. Five of these were altered by treatment with IFN-β 1a: uPA, CX3CL1, CCL2, TRAIL and IL18. CONCLUSION CCL2 and TRAIL were confirmed to be modulated with interferon beta treatment in MS. As novel findings, we now report that uPA and CX3CL1 were differentially expressed in MS and increased after IFN-beta-1a treatment. Conflicting results have been reported on how interferon beta affects IL-18.
Collapse
Affiliation(s)
| | - Stephanie Herman
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Anna Wiberg
- Department of Immunology, Genetics and Pathology Uppsala University Uppsala Sweden
| | | | - Kim Kultima
- Department of Medical Sciences Clinical Chemistry Uppsala University Uppsala Sweden
| | - Joachim Burman
- Department of Neuroscience Neurology Uppsala University Uppsala Sweden
| |
Collapse
|
2
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Taheri M, Nemati S, Movafagh A, Saberi M, Mirfakhraie R, Eftekharian MM, Arsang-Jang S, Rezagholizadeh A, Sayad A. TRAIL gene expression analysis in multiple sclerosis patients. Hum Antibodies 2016; 24:33-38. [PMID: 27472871 DOI: 10.3233/hab-160291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) as an autoimmune disorder in which the insulating covers of neurons in the Central Nervous System are destructed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an immunomodulatory molecule to protect against T cells hyper activation. METHODS In this Case-control study, we compare TRAIL gene expression in peripheral blood between 50 relapse remitting MS patients and 50 healthy controls by TaqMan Real time PCR. All the patients were negative for HLA-DRB1*15 susceptible allele, normal serum vitamin D, responder to Interferon beta. All the health individuals were matched to patients. Also, we tried to find correlation between TRAIL gene expression and clinical characteristics of patients. RESULTS No statistically significant difference was found in TRAIL mRNA expression between MS patients and controls (p> 0.05). There was no correlation in the TRAIL expression and age of onset, disease duration and Expanded Disability Status Scale of Kurtzke (EDSS). As IFN-b may have stimulatory effects on immunoregulatory function of TRAIL and all of our patients were treated with interferon beta and were responder, it lead to no significant change in TRAIL expression. We suggest comparing between responders and non-responders should be investigated.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Nemati
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saberi
- Department of Medical Genetics, Tehran medical University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Eftekharian
- Neurophysiology Research Center, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
- Molecular Immunology Research Group, Hamadan University of Medical Sciences and Health Services, Hamadan, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Amir Rezagholizadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
López-Gómez C, Oliver-Martos B, Pinto-Medel MJ, Suardiaz M, Reyes-Garrido V, Urbaneja P, Fernández Ó, Leyva L. TRAIL and TRAIL receptors splice variants during long-term interferon β treatment of patients with multiple sclerosis: evaluation as biomarkers for therapeutic response. J Neurol Neurosurg Psychiatry 2016; 87:130-7. [PMID: 25736057 PMCID: PMC4752633 DOI: 10.1136/jnnp-2014-309932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We aimed to assess the effects of interferon β (IFNβ) treatment on the expression of the splice variants of the Tumour necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) and its receptors in different cell subpopulations (CD14+, CD4+ and CD8+) from patients with multiple sclerosis (MS), and to determine whether this expression discriminated responders from non-responders to IFNβ therapy. METHODS We examined mRNA expression of the TRAIL and TRAIL receptors variants in patients with MS, at baseline and after one year of IFNβ therapy, according to responsiveness to this drug. RESULTS Long-term therapy with IFNβ increased the expression of TRAIL-α in T cell subsets exclusively from responders and decreased the expression of the isoform 2 of TRAILR-2 in monocytes from responders as well as non-responders. Lower expression of TRAIL-α, and higher expression of TRAIL-β in monocytes and T cells, was found before the onset of IFNβ therapy in patients who will subsequently become responders. Baseline expression of TRAILR-1 was also significantly higher in monocytes and CD4+ T cells from responders. CONCLUSIONS The present study shows that long-term IFNβ treatment has a direct influence on TRAIL-α and TRAILR-2 isoform 2 expression. Besides, receiver operating characteristic analysis revealed that the baseline expression of TRAIL-α in monocytes and T cells, and that of TRAILR-1 in monocytes and CD4+ T cells, showed a predictive value of the clinical response to IFNβ therapy, pointing to a role of TRAIL system in the mechanism of action of IFNβ in MS that will need further investigation.
Collapse
Affiliation(s)
- Carlos López-Gómez
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Begoña Oliver-Martos
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - María-Jesús Pinto-Medel
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Margarita Suardiaz
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Virginia Reyes-Garrido
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Patricia Urbaneja
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Óscar Fernández
- Department of Neurology, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Laura Leyva
- Research Laboratory, UGCI Neurociencias Clínicas, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Xu S, Liang T, Li S. Correlation between Polymorphism of TRAIL Gene and Condition of Intervertebral Disc Degeneration. Med Sci Monit 2015; 21:2282-7. [PMID: 26245704 PMCID: PMC4532195 DOI: 10.12659/msm.894157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been suggested to be related with the pathogenesis and progression of osteoarticular degenerations. This study therefore aimed to investigate the relationship between the polymorphism of the TRAIL gene and the pathogenesis and severity of intervertebral disc degeneration (IDD) via detection of serum TRAIL expression levels. Material/Methods A total of 100 IDD patients in our hospital were recruited in the experimental group, while another cohort of 100 healthy individuals was employed as the control group. Blood samples collected from all people were quantified for TRAIL level using enzyme-linked immunosorbent assay (ELISA), in addition to allele and genotype frequency analysis via fluorescent PCR for TRAIL gene. Results At loci 1525 and 1529 in 3′-untranslated region (UTR) of 5th exon of TRAIL gene, 3 different genotypes were identified: experimental group had higher frequency of 1525CG/1595CC, 1525G and 1595C alleles, compared to the control group (p<0.05). Patients under Schneiderman grade IV had significantly higher allele frequency compared to those at grade II or III. Serum TRAIL level was also higher in the experimental group compared to the control group, and in grade IV patients compared to grade II or III patients (p<0.05). Conclusions The G/C mutation at loci 1525/1595 of TRAIL gene may induce the progression of IDD, as the down-regulation of TRAIL can aggravate the severity of the disease.
Collapse
Affiliation(s)
- Shimin Xu
- Department of Orthopaedics, Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ting Liang
- Department of Orthopaedics, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Shuzhong Li
- Department of Orthopaedics, Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
6
|
Campo I, Zorzetto M, Bonella F. Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 2015; 9:437-57. [DOI: 10.1586/17476348.2015.1062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Tawdy MH, Abd el Nasser MM, Abd el Shafy SS, Nada MA, El Sirafy MNI, Magd AHA. Role of serum TRAIL level and TRAIL apoptosis gene expression in multiple sclerosis and relation to brain atrophy. J Clin Neurosci 2014; 21:1606-11. [DOI: 10.1016/j.jocn.2013.11.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 11/28/2013] [Accepted: 11/30/2013] [Indexed: 12/28/2022]
|
8
|
Moreno M, Sáenz-Cuesta M, Castilló J, Cantó E, Negrotto L, Vidal-Jordana A, Montalban X, Comabella M. Circulating levels of soluble apoptosis-related molecules in patients with multiple sclerosis. J Neuroimmunol 2013; 263:152-4. [DOI: 10.1016/j.jneuroim.2013.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
|
9
|
Hegen H, Millonig A, Bertolotto A, Comabella M, Giovanonni G, Guger M, Hoelzl M, Khalil M, Killestein J, Lindberg R, Malucchi S, Mehling M, Montalban X, Polman CH, Rudzki D, Schautzer F, Sellebjerg F, Sørensen PS, Deisenhammer F. Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients: binding antibodies predict neutralizing antibody development. Mult Scler 2013; 20:577-87. [PMID: 24009164 DOI: 10.1177/1352458513503597] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neutralizing antibodies (NAb) affect efficacy of interferon-beta (IFN-b) treatment in multiple sclerosis (MS) patients. NAbs evolve in up to 44% of treated patients, usually between 6-18 months on therapy. OBJECTIVES To investigate whether early binding antibody (BAb) titers or different IFN-b biomarkers predict NAb evolution. METHODS We included patients with MS or clinically isolated syndrome (CIS) receiving de novo IFN-b treatment in this prospective European multicenter study. Blood samples were collected at baseline, before and after the first IFN-b administration, and again after 3, 12 and 24 months on that therapy; for determination of NAbs, BAbs, gene expression of MxA and protein concentrations of MMP-9, TIMP-1, sTRAIL, CXCL-10 and CCL-2. RESULTS We found that 22 of 164 (13.4%) patients developed NAbs during a median time of 23.8 months on IFN-b treatment. Of these patients, 78.9% were BAb-positive after 3 months. BAb titers ≥ 1:2400 predicted NAb evolution with a sensitivity of 74.7% and a specificity of 98.5%. Cross-sectionally, MxA levels were significantly diminished in the BAb/NAb-positive samples; similarly, CXCL-10 and sTRAIL concentrations in BAb/NAb-positive and BAb-positive/NAb-negative samples, respectively, were also diminished compared to BAb/NAb-negative samples. CONCLUSIONS BAb titers reliably predict NAbs. CXCL-10 is a promising sensitive biomarker for IFN-b response and its abrogation by anti-IFN-b antibodies.
Collapse
Affiliation(s)
- H Hegen
- Department of Neurology, Innsbruck Medical University, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aberrant expression of the apoptosis-related proteins BAK and MCL1 in T cells in multiple sclerosis. J Neuroimmunol 2012; 244:51-6. [PMID: 22257632 DOI: 10.1016/j.jneuroim.2011.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 12/22/2022]
Abstract
Pathogenic T cells of multiple sclerosis (MS) patients have been suggested to be endowed with an increased resistance to apoptosis, contributing to their increased survival. We report herein increased levels of the anti-apoptotic MCL1 protein and its half-life in activated lymphocytes of MS patients, which were not associated with differences in MCL1 RNA levels or with alterations in the expression levels of the known E3 ligases of MCL1-β-TrCP and HUWE1. Concomitantly, the expression levels of the pro-apoptotic protein BAK were decreased in MS patients at relapse. These findings suggest the dysregulation of the apoptosis-related proteins MCL1 and BAK in MS.
Collapse
|
11
|
Dobson R, Meier UC, Giovannoni G. More to come: humoral immune responses in MS. J Neuroimmunol 2011; 240-241:13-21. [PMID: 22019113 DOI: 10.1016/j.jneuroim.2011.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 01/14/2023]
Abstract
Interest in the role of B-cells in multiple sclerosis (MS) pathogenesis has increased, and a number of B-cell targeted therapies are currently in clinical trials. B-cells are key mediators of the humoral immune response, with roles including antibody production and acting as antigen presenting cells. Whilst previously, the presence of B-cells within MS plaques has been thought to be secondary to T-cell dysregulation, it is now becoming clear that B-cells play an independent role in disease. In this review we will discuss the potential role of B-cells in MS, how this influences our understanding of the disease, and potential therapeutic implications.
Collapse
Affiliation(s)
- Ruth Dobson
- Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London E1 2AT, UK.
| | | | | |
Collapse
|
12
|
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett 2011; 585:3770-80. [PMID: 21550344 DOI: 10.1016/j.febslet.2011.04.066] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
The presence of the blood-brain barrier (BBB) restricts the movement of soluble mediators and leukocytes from the periphery to the central nervous system (CNS). Leukocyte entry into the CNS is nonetheless an early event in multiple sclerosis (MS), an inflammatory disorder of the CNS. Whether BBB dysfunction precedes immune cell infiltration or is the consequence of perivascular leukocyte accumulation remains enigmatic, but leukocyte migration modifies BBB permeability. Immune cells of MS subjects express inflammatory cytokines, reactive oxygen species (ROS) and enzymes that can facilitate their migration to the CNS by influencing BBB function, either directly or indirectly. In this review, we describe how immune cells from the peripheral blood overcome the BBB and promote CNS inflammation in MS through BBB disruption.
Collapse
Affiliation(s)
- Catherine Larochelle
- Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, CRCHUM, Notre-Dame Hospital, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|