1
|
Preclinical Evaluation of Recombinant Microbial Glycoside Hydrolases in the Prevention of Experimental Invasive Aspergillosis. mBio 2021; 12:e0244621. [PMID: 34579578 PMCID: PMC8546845 DOI: 10.1128/mbio.02446-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses. Aspergillus biofilm formation requires the production of a cationic matrix exopolysaccharide, galactosaminogalactan (GAG). In this study, recombinant glycoside hydrolases (GH)s that degrade GAG were evaluated as antifungal agents in a mouse model of invasive aspergillosis. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that although GHs have short half-lives, GH prophylaxis resulted in reduced fungal burden in leukopenic mice and improved survival in neutropenic mice, possibly through augmenting pulmonary neutrophil recruitment. Combining GH prophylaxis with posaconazole treatment resulted in a greater reduction in fungal burden than either agent alone. This study lays the foundation for further exploration of GH therapy in invasive fungal infections. IMPORTANCE The biofilm-forming mold Aspergillus fumigatus is a common causative agent of invasive fungal airway disease in patients with a compromised immune system or chronic airway disease. Treatment of A. fumigatus infection is limited by the few available antifungals to which fungal resistance is becoming increasingly common. The high mortality rate of A. fumigatus-related infection reflects a need for the development of novel therapeutic strategies. The fungal biofilm matrix is in part composed of the adhesive exopolysaccharide galactosaminogalactan, against which antifungals are less effective. Previously, we demonstrated antibiofilm activity with recombinant forms of the glycoside hydrolase enzymes that are involved in galactosaminogalactan biosynthesis. In this study, prophylaxis with glycoside hydrolases alone or in combination with the antifungal posaconazole in a mouse model of experimental aspergillosis improved outcomes. This study offers insight into the therapeutic potential of combining biofilm disruptive agents to leverage the activity of currently available antifungals.
Collapse
|
2
|
Schaefer AL, Ceesay M, Leier JA, Tesch J, Wisenden BD, Pandey S. Factors Contributing to Sex Differences in Mice Inhaling Aspergillus fumigatus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8851. [PMID: 33260764 PMCID: PMC7729525 DOI: 10.3390/ijerph17238851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Aspergillus fumigatus is a respiratory fungal pathogen and an allergen, commonly detected in flooded indoor environments and agricultural settings. Previous studies in Balb/c mice showed that repeated inhalation of live and dry A. fumigatus spores, without any adjuvant, elevated allergic immune response and airway remodeling. Sex-specific differences can influence host-pathogen interactions and allergic-asthma related outcomes. However, the effect of host sex on immune response, in the context of A. fumigatus exposure, remains unknown. In this study, we quantified the multivariate and univariate immune response of C57BL/6J mice to live, dry airborne A. fumigatus spores. Our results corroborate previous results in Balb/c mice that repeated inhalation of live A. fumigatus spores is sufficient to induce mucus production and inflammation by day 3 post last challenge, and antibody titers and collagen production by day 28 post-challenge. Principal Component Analysis (PCA) showed that females exhibited significantly higher levels of immune components than males did. Taken together, our data indicate that host-sex is an important factor in shaping the immune response against A. fumigatus, and must be considered when modeling disease in animals, in designing diagnostics and therapeutics for A. fumigatus-associated diseases or while drafting evidence-based guidelines for safe mold levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumali Pandey
- Biosciences Department, Minnesota State University Moorhead, Moorhead, 56563 MN, USA; (A.L.S.); (M.C.); (J.A.L.); (J.T.); (B.D.W.)
| |
Collapse
|
3
|
Mirkov I, Popov Aleksandrov A, Lazovic B, Glamoclija J, Kataranovski M. Usefulness of animal models of aspergillosis in studying immunity against Aspergillus infections. J Mycol Med 2019; 29:84-96. [DOI: 10.1016/j.mycmed.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/28/2018] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
|
4
|
Szigeti ZM, Talas L, Palicz Z, Szentesi P, Hargitai Z, Csernoch L, Balla J, Pocsi I, Banfalvi G, Szeman-Nagy G. Murine model to follow hyphal development in invasive pulmonary aspergillosis. Appl Microbiol Biotechnol 2018; 102:2817-2825. [PMID: 29423632 DOI: 10.1007/s00253-018-8800-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/18/2022]
Abstract
Aspergillus fumigatus is an opportunistic pathogen, the leading cause of invasive and disseminated aspergillosis in systemic immunocompromised patients, and an important cause of mortality. The aim of the present study was to adapt a pulmonary aspergillosis murine model, to determine pathodynamical parameters quantitatively, and to follow the progression of fungal infection in vivo. The nasal inoculation of Aspergillus conidia in mice previously subjected to immunosuppression with cyclophosphamide (CP) turned out to be a more suitable model than that of immunosuppressed with hydrocortisone (HC). The following parameters were found to correlate quantitatively with the progress of the infection: (i) survival rate, (ii) weight loss of mice, (iii) infected focal plaque size, (iv) hyphal density, (v) hyphal length distribution of A. fumigatus, and the (vi) the histopathological status and scores. These parameters will be essential elements for the development of antifungal drugs and therapies, and important for the investigation of the pathogenicity in different strains of A. fumigatus.
Collapse
Affiliation(s)
- Zsuzsa M Szigeti
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4002, Hungary
| | - Laszlo Talas
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4002, Hungary
| | - Zoltan Palicz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, H-4002, Hungary
| | - Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, H-4002, Hungary
| | - Zoltan Hargitai
- Department of Pathology, Kenezy Hospital, University of Debrecen, Debrecen, H-4031, Hungary
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, H-4002, Hungary
| | - Jozsef Balla
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, H-4002, Hungary
| | - Istvan Pocsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4002, Hungary
| | - Gaspar Banfalvi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4002, Hungary.
| | - Gabor Szeman-Nagy
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, Debrecen, H-4002, Hungary
| |
Collapse
|
5
|
Kimura G, Nakaoki T, Nishimoto Y, Suzuki Y, Rapeport G, Strong P, Ito K, Kizawa Y. Effects of intranasally dosed posaconazole on fungal load and biomarkers in Aspergillus fumigatus infected immunocompromised mice. Mycoses 2017; 60:728-735. [PMID: 28699245 DOI: 10.1111/myc.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022]
Abstract
Although anti-fungal triazoles are dosed orally or systemically for Aspergillus fumigatus infection, systemic adverse events and limited exposure of the lung cavity would make a topical treatment for the lung an attractive option. In this study, we examined the effects of intranasally dosed posaconazole on survival rates and biomarkers in A. fumigatus (itraconazole susceptible: ATCC13073 [Af]; or resistant: NCPF7100 [AfR]) infected, temporarily neutropenic A/J mice. Once daily treatment produced a dose-dependent improvement of survival of Af-infected mice (ED50 : 0.019 mg/mouse [approx. 0.755 mg/kg, in]), similar to its potency (ED50 : 0.775 mg/kg, po) after once daily oral dosing. For AfR infection, either intranasal or oral posaconazole was largely ineffective on survival, although the highest dose of intranasal treatment (0.35 mg/mouse) achieved 75% survival rate. Early intervention (treated on days 0, 1, 2 and 3 postinfection) and late intervention (treated on days 1, 2 and 3) with intranasal posaconazole (0.014-0.35 mg/mouse) demonstrated potent inhibition of lung fungal load and galactomannan levels in both bronchoalveolar lavage fluid (BALF) and serum as well as inflammatory cells, IFN-γ, IL-17 and malondialdehyde (MDA) in BALF. Thus, posaconazole when dosed intranasally once daily showed an improvement of survival equivalent to or better than oral treatment, and produced potent inhibition of fungal load and biomarkers.
Collapse
Affiliation(s)
- Genki Kimura
- Laboratory of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Takahiro Nakaoki
- Laboratory of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yuki Nishimoto
- Laboratory of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | - Yuto Suzuki
- Laboratory of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| | | | | | | | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, Nihon University School of Pharmacy, Funabashi, Japan
| |
Collapse
|
6
|
Wei Z, Spizzo I, Diep H, Drummond GR, Widdop RE, Vinh A. Differential phenotypes of tissue-infiltrating T cells during angiotensin II-induced hypertension in mice. PLoS One 2014; 9:e114895. [PMID: 25501574 PMCID: PMC4263711 DOI: 10.1371/journal.pone.0114895] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/15/2014] [Indexed: 12/26/2022] Open
Abstract
Hypertension remains the leading risk factor for cardiovascular disease (CVD). Experimental hypertension is associated with increased T cell infiltration into blood pressure-controlling organs, such as the aorta and kidney; importantly in absence of T cells of the adaptive immune system, experimental hypertension is significantly blunted. However, the function and phenotype of these T cell infiltrates remains speculative and undefined in the setting of hypertension. The current study compared T cell-derived cytokine and reactive oxygen species (ROS) production from normotensive and hypertensive mice. Splenic, blood, aortic, kidney and brain T cells were isolated from C57BL/6J mice following 14-day vehicle or angiotensin (Ang) II (0.7 mg/kg/day, s.c.) infusion. T cell infiltration was increased in aorta, kidney and brain from hypertensive mice. Cytokine analysis in stimulated T cells indicated an overall Th1 pro-inflammatory phenotype, but a similar proportion (flow cytometry) and quantity (cytometric bead array) of IFN-γ, TNF-α, IL-4 and IL-17 between vehicle- and Ang II- treated groups. Strikingly, elevated T cell-derived production of a chemokine, chemokine C-C motif ligand 2 (CCL2), was observed in aorta (∼6-fold) and kidney in response to Ang II, but not in brain, spleen or blood. Moreover, T cell-derived ROS production in aorta was elevated ∼3 -fold in Ang II-treated mice (n = 7; P<0.05). Ang II-induced hypertension does not affect the overall T cell cytokine profile, but enhanced T cell-derived ROS production and/or leukocyte recruitment due to elevated CCL2, and this effect may be further amplified with increased infiltration of T cells. We have identified a potential hypertension-specific T cell phenotype that may represent a functional contribution of T cells to the development of hypertension, and likely several other associated vascular disorders.
Collapse
Affiliation(s)
- Zihui Wei
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Iresha Spizzo
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Henry Diep
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Fahmy SR, Soliman AM, Ali EM. Antifungal and antihepatotoxic effects of sepia ink extract against oxidative stress as a risk factor of invasive pulmonary aspergillosis in neutropenic mice. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:148-59. [PMID: 25371577 PMCID: PMC4202433 DOI: 10.4314/ajtcam.v11i3.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND There is a great need for novel strategies to overcome the high mortality associated with invasive pulmonary aspergillosis (IPA) in immunocompromised patients. To evaluate the antifungal and antihepatotoxic potentials of Sepia ink extract, its effect on liver oxidative stress levels was analyzed against IPA in neutropenic mice using amphotercin B as a reference drug. MATERIALS AND METHODS Eighty neutropenic infected mice were randomly assigned into four main groups. The 1(st) group was treated with saline, neutropenic infected (NI), the 2(nd) group was treated with ink extract (200 mg/kg) (IE) and the 3(rd) group was treated with amphotericin B (150 mg/kg) (AMB) and 4(th) group was treated with IE plus AMB. Treatment was started at 24 h after fungal inoculation (1×10(9) conidia/ml). RESULTS The present study revealed good in vitro and in vivo antifungal activity of IE against A. fumigatus. IE significantly reduced hepatic fungal burden and returns liver function and histology to normal levels. Compared with the untreated infected group, mice in the IE, AMB, and IE+ AMB groups had increased glutathione reduced (GSH) and superoxide dismutase (SOD) and significantly reduced malondialdehyde (MDA) levels at 24 and 72 h after inoculation with A. fumigatus conidia. CONCLUSION It is then concluded that in combination with antifungal therapy (AMB), IE treatment can reduce hepatic fungal burden, alleviate hepatic granulomatous lesions and oxidative stress associated with IPA in neutropenic mice.
Collapse
Affiliation(s)
- Sohair R Fahmy
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amel M Soliman
- Zoology department, Faculty of Science, Cairo University, Giza, Egypt
| | - Enas M Ali
- Botany department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|