1
|
Sánchez-Garcés MÁ, Camps-Font O, Escoda-Francolí J, Muñoz-Guzón F, Toledano-Serrabona J, Gay-Escoda C. Short time guided bone regeneration using beta-tricalcium phosphate with and without fibronectin - An experimental study in rats. Med Oral Patol Oral Cir Bucal 2020; 25:e532-e540. [PMID: 32388521 PMCID: PMC7338076 DOI: 10.4317/medoral.23564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this histomorphometric study was to assess the bone regeneration potential of beta-tricalcium phosphate with fibronectin (β-TCP-Fn) in critical-sized defects (CSDs) in rats calvarial, to know whether Fn improves the new bone formation in a short time scope.
Material and Methods CSDs were created in 30 Sprague Dawley rats, and divided into four groups (2 or 6 weeks of healing) and type of filling (β-TCP-Fn, β-TCP, empty control). Variables studied were augmented area (AA), gained tissue (GT), mineralized/non mineralized bone matrix (MBM/NMT) and bone substitute (BS).
Results 60 samples at 2 and six weeks were evaluated. AA was higher for treatment groups comparing to controls (p < 0.001) and significant decrease in BS area in the β-TCP-Fn group from 2 to 6 weeks (p = 0.031). GT was higher in the β-TCP-Fn group than in the controls expressed in % (p = 0.028) and in mm2 (p = 0.011), specially at two weeks (p=0.056).
Conclusions Both β-TCP biomaterials are effective as compared with bone defects left empty in maintaining the volume. GT in defects regeneration filed with β-TCP-Fn are significantly better in short healing time when comparing with controls but not for β-TCP used alone in rats calvarial CSDs. Key words:Bone regeneration, biomaterials, experimental design, histology.
Collapse
Affiliation(s)
- M-Á Sánchez-Garcés
- School of Medicine and Health Sciences Campus de Bellvitge, University of Barcelona Pavelló Govern, 2ª planta, Despatx 2.9, C/ Feixa Llarga, s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
2
|
Brunello G, Panda S, Schiavon L, Sivolella S, Biasetto L, Del Fabbro M. The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1500. [PMID: 32218290 PMCID: PMC7177381 DOI: 10.3390/ma13071500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Bioceramic scaffolds are appealing for alveolar bone regeneration, because they are emerging as promising alternatives to autogenous and heterogenous bone grafts. The aim of this systematic review is to answer to the focal question: in critical-sized bone defects in experimental animal models, does the use of a bioceramic scaffolds improve new bone formation, compared with leaving the empty defect without grafting materials or using autogenous bone or deproteinized bovine-derived bone substitutes? Electronic databases were searched using specific search terms. A hand search was also undertaken. Only randomized and controlled studies in the English language, published in peer-reviewed journals between 2013 and 2018, using critical-sized bone defect models in non-medically compromised animals, were considered. Risk of bias assessment was performed using the SYRCLE tool. A meta-analysis was planned to synthesize the evidence, if possible. Thirteen studies reporting on small animal models (six studies on rats and seven on rabbits) were included. The calvarial bone defect was the most common experimental site. The empty defect was used as the only control in all studies except one. In all studies the bioceramic materials demonstrated a trend for better outcomes compared to an empty control. Due to heterogeneity in protocols and outcomes among the included studies, no meta-analysis could be performed. Bioceramics can be considered promising grafting materials, though further evidence is needed.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Sourav Panda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha O Anusandhan University, Bhubaneswar, 751003 Odisha, India
| | - Lucia Schiavon
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Stefano Sivolella
- Section of Dentistry, Department of Neurosciences, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (L.S.); (S.S.)
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza Italy; (G.B.); (L.B.)
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Commenda 10, 20122 Milan, Italy;
- Dental Clinic, I.R.C.C.S. Orthopedic Institute Galeazzi, Via Galeazzi 4, 20161 Milan, Italy
| |
Collapse
|
3
|
Al-Qadhi G, Soliman M, Abou-Shady I, Rashed L. Gingival mesenchymal stem cells as an alternative source to bone marrow mesenchymal stem cells in regeneration of bone defects: In vivo study. Tissue Cell 2019; 63:101325. [PMID: 32223954 DOI: 10.1016/j.tice.2019.101325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Healing of critical sized bone defects represents a challenging issue in clinical and research fields. Current therapeutic techniques, such as bone grafts or bone grafts substitutes, still have limitations and drawbacks. Therefore, stem cell-based therapy provides a prospective approach to enhance bone regeneration. The present study aimed to assess the regenerative capacity of Gingival mesenchymal stem cells (GMSCs) as well as Bone marrow mesenchymal stem cells (BMSCs) loaded on NanoBone scaffold, in comparison to the unloaded one, in surgically created bone defects in rabbits' tibiae. To achieve this aim, critical sized bone defects, of 6-mm diameter each, were unilaterally created in tibiae of adult New Zeeland male white rabbits (n = 27). The rabbits were then divided randomly into three groups (9 each) and received the following: Group I: Unloaded NanoBone Scaffold, Group II: GMSCs Loaded on NanoBone Scaffold, and Group III: BMSCs Loaded on NanoBone Scaffold. Three rabbits from each group were then sacrificed at each time point (2, 4 and 6 weeks postoperatively), tibiae were dissected out to evaluate bone healing in the created bony defects; both histologically and histomorphometrically. The findings of this study indicate that both GMSCs and BMSCs exhibited fibroblast morphology and expressed phenotypic MSCs markers. Histologically, local application of GMSCs and BMSCs loaded on NanoBone scaffold showed enhanced the pattern of bone regeneration as compared to the unloaded scaffold. Histomorphometrically, there was astatistically insignificant difference in the new bone area % between the bony defects treated with GMSCs and BMSCs. Thus, GMSCs can be considered as a comparable alternative source to BMSCs in bone regeneration.
Collapse
Affiliation(s)
- Gamilah Al-Qadhi
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt.
| | - Malak Soliman
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt
| | - Iman Abou-Shady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Mathaf-El-Manial Street, 11553, Cairo, Egypt
| | - Laila Rashed
- Biochemistry and Molecular Biology Unit, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Kasr El Aini, Cairo, Egypt
| |
Collapse
|
4
|
Escoda-Francolí J, Sánchez-Garcés MÁ, Gimeno-Sandig Á, Muñoz-Guzón F, Barbany-Cairó JR, Badiella-Busquets L, Gay-Escoda C. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats. Clin Oral Implants Res 2018; 29:1038-1049. [PMID: 30267433 DOI: 10.1111/clr.13370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This histomorphometric study compared bone regeneration potential of beta-tricalcium phosphate with fibronectin (β-TCP-Fn) in critical-sized calvarial defects (CSDs) in rats to assess whether fibronectin (Fn) improved new bone formation. MATERIAL AND METHODS Critical-sized calvarial defects were created in 30 adult male Sprague Dawley rats, which were divided into four groups according to the time of euthanasia (6 or 8 weeks of healing) and type of filling (β-TCP-Fn/6 weeks, β-TCP/6 weeks, β-TCP-Fn/8 weeks and β-TCP/8 weeks). The primary variables related to new bone formation were augmented area (AA) and gained tissue (GT; sum of mineralized bone matrix [MBM] and bone substitute [BS]). Secondary variables were the diameter of the defect, MBM, non-mineralized tissue (NMT) and BS. RESULTS A total of 29 rats and 58 histological samples were evaluated, 28 (48.3%) samples obtained at 6 weeks and 30 (51.7%) at 8 weeks, homogeneously distributed between right and left sides. Thirteen (22.4%) were treated with β-TCP-Fn, 16 (27.6%) with β-TCP and 29 (50%) were controls. At 8 weeks, histomorphometric analysis showed significant differences in AA using β-TCP and β-TCP-Fn versus controls (p = 0.001 and p = 0.005, respectively). Bone turnover expressed as % within the target area was slightly higher but not statistically significant in the β-TCP-Fn than in β-TCP (MBM) at 6 weeks versus 8 weeks (p = 0.067 and p = 0.335, respectively). Finally, the total GT area in mm2 was higher using β-TCP-Fn as compared to β-TCP (p = 0.044). CONCLUSIONS β-TCP-Fn was slightly but non-significantly more effective than β-TCP without Fn for improving the volume of regenerated bone in CSDs of rats, possibly allowing a more efficient bone remodelling process. This effect however should continue being investigated.
Collapse
Affiliation(s)
- Jaume Escoda-Francolí
- Oral Surgery and Implantology, Faculty of Dentistry, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL Institute), L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - María Ángeles Sánchez-Garcés
- Oral Surgery and Implantology, Faculty of Dentistry, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL Institute), L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Álvaro Gimeno-Sandig
- Animal Research Facility, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Fernando Muñoz-Guzón
- Department of Veterinary Clinical Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Joan R Barbany-Cairó
- Department of Physiological Sciences II, Faculty of Medicine, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Llorenç Badiella-Busquets
- The Applied Statistics Service, Autonomous University of Barcelona, Cerdanyola del Vallés, Barcelona, Spain
| | - Cosme Gay-Escoda
- Oral and Maxillofacial Surgery, Faculty of Dentistry, IDIBELL Institute, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain.,Oral Surgery and Implantology, EFHRE International University (FUCSO), Barcelona, Spain.,Oral and Maxillofacial Department, Centro Médico Teknon, Barcelona, Spain
| |
Collapse
|
5
|
Human Bone Marrow Mesenchymal Stromal Cells Promote Bone Regeneration in a Xenogeneic Rabbit Model: A Preclinical Study. Stem Cells Int 2018; 2018:7089484. [PMID: 30123292 PMCID: PMC6079361 DOI: 10.1155/2018/7089484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023] Open
Abstract
Significant research efforts have been undertaken during the last decades to treat musculoskeletal disorders and improve patient's mobility and quality of life. The goal is the return of function as quickly and completely as possible. Cellular therapy has been increasingly employed in this setting. The design of this study was focused on cell-based alternatives. The present study aimed at investigating the bone regeneration capacity of xenogeneic human bone marrow-derived mesenchymal stromal cell (hMSC) implantation with tricalcium phosphate (TCP) granules in an immunocompetent rabbit model of critical-size bone defects at the femoral condyles. Two experimental groups, TCP and hMSC + TCP, were compared. Combination of TCP and hMSC did not affect cell viability or osteogenic differentiation. We also observed significantly higher bone regeneration in vivo in the hMSC + TCP group, which also displayed better TCP osteointegration. Also, evidence of hMSC contribution to a better TCP osteointegration was noticed. Finally, no inflammatory reaction was detected, besides the xenotransplantation of human cells into an immunocompetent recipient. In summary, hMSC combined with TCP granules is a potential combination for bone regeneration purposes that provides better preclinical results compared to TCP alone.
Collapse
|
6
|
Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. MATERIALS 2018; 11:ma11020215. [PMID: 29385747 PMCID: PMC5848912 DOI: 10.3390/ma11020215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.
Collapse
|
7
|
Paulo MJE, dos Santos MA, Cimatti B, Gava NF, Riberto M, Engel EE. Osteointegration of porous absorbable bone substitutes: A systematic review of the literature. Clinics (Sao Paulo) 2017; 72:449-453. [PMID: 28793006 PMCID: PMC5525165 DOI: 10.6061/clinics/2017(07)10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/05/2017] [Indexed: 11/30/2022] Open
Abstract
Biomaterials' structural characteristics and the addition of osteoinductors influence the osteointegration capacity of bone substitutes. This study aims to identify the characteristics of porous and resorbable bone substitutes that influence new bone formation. An Internet search for studies reporting new bone formation rates in bone defects filled with porous and resorbable substitutes was performed in duplicate using the PubMed, Web of Science, Scielo, and University of São Paulo Digital Library databases. Metaphyseal or calvarial bone defects 4 to 10 mm in diameter from various animal models were selected. New bone formation rates were collected from the histomorphometry or micro-CT data. The following variables were analyzed: animal model, bone region, defect diameter, follow-up time after implantation, basic substitute material, osteoinductor addition, pore size and porosity. Of 3,266 initially identified articles, 15 articles describing 32 experimental groups met the inclusion criteria. There were no differences between the groups in the experimental model characteristics, except for the follow-up time, which showed a very weak to moderate correlation with the rate of new bone formation. In terms of the biomaterial and structural characteristics, only porosity showed a significant influence on the rate of new bone formation. Higher porosity is related to higher new bone formation rates. The influence of other characteristics could not be identified, possibly due to the large variety of experimental models and methodologies used to estimate new bone formation rates. We suggest the inclusion of standard control groups in future experimental studies to compare biomaterials.
Collapse
Affiliation(s)
- Maria Júlia Escanhoela Paulo
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Mariana Avelino dos Santos
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Bruno Cimatti
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Nelson Fabrício Gava
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Marcelo Riberto
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
| | - Edgard Eduard Engel
- Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
8
|
RETRACTED: Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate—A pilot study in Fox-Hound dogs at 4 and 8 weeks. Ann Anat 2017; 209:61-68. [DOI: 10.1016/j.aanat.2016.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 11/24/2022]
|
9
|
Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO 4 ) bioceramics and their biomedical applications. CERAMICS INTERNATIONAL 2016; 42:6529-6554. [DOI: 10.1016/j.ceramint.2016.01.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
10
|
Lozano-Carrascal N, Delgado-Ruiz RA, Gargallo-Albiol J, Maté-Sánchez JE, Hernandez Alfaro F, Calvo-Guirado JL. Xenografts Supplemented with Pamindronate placed in postextraction sockets to avoid crestal bone resorption. Experimental study in Fox hound dogs. Clin Oral Implants Res 2016; 27:149-55. [PMID: 25639484 DOI: 10.1111/clr.12550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The aim of the study was to compare the effects of porcine xenografts (MP3(®)) with or without pamindronate for the healing of small and large defects of postextraction sockets. MATERIALS AND METHODS Six beagle dogs were used in the study; second premolars and first molars of the mandible were extracted, small defects (SD) and large defects (LD) were identified. Each defect was measured and randomly filled as follows: SC (small control defects filled with MP3(®) alone), ST (small test defects filled with MP3(®) modified with pamindronate), LC (large control defects filled with MP3(®) alone), LT (large test defects filled with MP3(®) modified with pamindronate). After 4 and 8 weeks, the animals were euthanized and the percentages of new bone formation (NB), residual graft (RG) and connective tissue (CT) were analysed by histology and histomorphometry of undecalcified samples. RESULTS After 4 weeks, NB formation was higher for ST compared to all groups and for LT compared to LC (P < 0.05); RG was significantly higher in both control groups compared to tests (P < 0.05); and CT was higher in large defects (LC and LT) compared to small defects. After 8 weeks, NB formation was higher for test groups (ST and LT) compared to controls (P < 0.05); RG was significantly higher in both control groups compared to tests (P < 0.05); and CT was higher in large defects (LC and LT) compared to small defects (P < 0.05). CONCLUSIONS Within the limitations of this experimental study, the findings suggest that porcine xenografts modified with pamindronate favours the new bone formation and increased the porcine xenograft substitution/replacement after 4 and 8 weeks of healing.
Collapse
Affiliation(s)
| | - Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | | | - José Luis Calvo-Guirado
- General & Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Kämmerer PW, Schiegnitz E, Palarie V, Dau M, Frerich B, Al-Nawas B. Influence of platelet-derived growth factor on osseous remodeling properties of a variable-thread tapered dental implant in vivo. Clin Oral Implants Res 2016; 28:201-206. [PMID: 26771071 DOI: 10.1111/clr.12782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To evaluate the effect of platelet-derived growth factor (rhPDGF-BB) on the promotion of osteogenesis around variable-thread tapered implants in an animal model. MATERIAL AND METHODS Twenty-four variable-thread tapered implants were inserted in the tibia of 12 rabbits. Twelve sites received additional rhPDGF-BB released from a presoaked xenogenic bone block that was fixed supracrestally. Primary outcomes were bone-to-implant contact (BIC; in % ± SD) and percentage of medullary bone fill around the implants (PMF; in % ± SD) after 3 weeks (PDGF n = 6, no PDGF n = 6) and 6 weeks (PDGF n = 6, no PDGF n = 6). RESULTS Considerable crestal and medullary bone remodeling could be found around all implants. After 3 weeks, both BIC and PMF values were higher in the no PDGF group (BIC: 63% ± 10 with PDGF vs. 85% ± 5 with no PDGF; PMF: 57% ± 10 with PDGF vs. 74% ± 4 with no PDGF). After 6 weeks, the BIC difference between the two groups was less distinct (BIC: 78% ± 17 with PDGF vs. 72% ± 25 with no PDGF), whereas the PDGF group showed higher PMF values (PMF: 77% ± 5 with PDGF vs. 56% ± 10 with no PDGF). CONCLUSIONS The addition of rhPDGF-BB decreases early osseous crestal and medullar healing properties around dental implants. In a later phase, an increase in the cortical area as well as an increased medullar bone formation was seen. This response is likely to provide stronger secondary stability and stability in suboptimal situations involving poor-quality bone.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Eik Schiegnitz
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Victor Palarie
- Department of Oral and Maxillofacial Surgery and Oral Implantology, "A. Gutan" of the State University of Medicine and Pharmacy "N. Testemitanu,", Chisinau, Moldova
| | - Michael Dau
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
12
|
Maté Sánchez de Val JE, Calvo-Guirado JL, Gómez-Moreno G, Pérez-Albacete Martínez C, Mazón P, De Aza PN. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Clin Oral Implants Res 2015; 27:1331-1338. [PMID: 26666991 DOI: 10.1111/clr.12722] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was the synthesis and analysis of the tissue reaction to three different Hydroxyapatite (HA)-based bone substitute materials differing only in granule size, porosity, and crystallinity through an animal experimental model at 60 days. MATERIALS AND METHODS Three different HA-based biomaterials were synthesized and characterized by X-ray diffraction, SEM, and EDS analysis, the resultant product was ground in three particle sizes: Group I (2000-4000 μm), Group II (1000-2000 μm), and Group III (600-1000 μm). Critical size defects were created in both tibias of 15 rabbits. Four defects per rabbit for a total of 60 defects were grafted with the synthesized materials as follows: Group I (15 defects), Group II (15 defects), Group III (15 defects), and empty (15 defects control). After animals sacrifice at 60 days samples were obtained and processed for SEM and EDS evaluation of Ca/P ratios, elemental mapping was performed to determine the chemical degradation process and changes to medullary composition in all the four study groups. RESULTS The tendency for the density was to increase with the increasing annealing temperature; in this way it was possible to observe that the sample that shows highest crystallinity and crystal size corresponding to that of group I. The SEM morphological examination showed that group III implant showed numerous resorption regions, group II implant presented an average resorption rate of all the implants. The group I displayed smoother surface features, in comparison with the other two implants. CONCLUSION The data from this study show that changing the size, porosity, and crystallinity of one HA-based bone substitute material can influence the integration of the biomaterials within the implantation site and the new bone formation.
Collapse
Affiliation(s)
| | - José L Calvo-Guirado
- International Research Cathedra, UCAM, Universidad Católica San Antonio, Murcia, Spain
| | - Gerardo Gómez-Moreno
- Periodontology and Implant Dentistry, Pharmacological Research in Dentistry Group, Special Care in Dentistry, Faculty of Dentistry, University of Granada, Granada, Spain
| | | | - Patricia Mazón
- Departamento de Materiales, Óptica y Tecnologia Electrónica, Universidad Miguel Hernández, Avda. Universidad s/n, Elche (Alicante), Spain
| | - Piedad N De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. Universidad s/n, Elche (Alicante), Spain
| |
Collapse
|
13
|
Stewart SK, Bennett PM, Stapley SA, Dretzke J, Bem D, Penn-Barwell JG. Pre-clinical evaluation of therapies to prevent or treat bone non-union: a systematic review protocol. Syst Rev 2015; 4:161. [PMID: 26563730 PMCID: PMC4643533 DOI: 10.1186/s13643-015-0148-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Non-union of fractured bone is a major cause of morbidity in the orthopaedic population. Despite this, optimal management of non-union is still unclear and remains a significant clinical challenge. Research continues in animal models in an attempt to identify an effective clinical treatment. The proposed systematic review will evaluate current therapies of bone non-union in animal models, in order to identify those that may translate successfully to clinical therapies. METHODS/DESIGN The methodology for the systematic review will be in accordance with standard guidelines. All potential sources for pre-clinical studies will be interrogated and the search strategy written in conjunction with a specialist in this field. Data extraction will be conducted by two reviewers to minimise bias. Analysis will be predominantly qualitative because of the heterogeneity that is likely to exist between the studies. However, quantitative synthesis will be performed where homogeneity in a sub-group of studies exists. Quality assessment will be undertaken utilising a risk of bias tool. DISCUSSION To date, there has not been a systematic review addressing bone non-union therapies in animal models despite the plethora of pre-clinical research currently being undertaken. This protocol details and outlines the methodology and justification for such a review.
Collapse
Affiliation(s)
- Sarah K Stewart
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| | - Philippa M Bennett
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| | - Sarah A Stapley
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| | - Janine Dretzke
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| | - Danai Bem
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| | - Jowan G Penn-Barwell
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, B15 2TH, West Midlands, UK.
| |
Collapse
|
14
|
Maté Sánchez de Val JE, Calvo Guirado JL, Ramírez Fernández MP, Delgado Ruiz RA, Mazón P, De Aza PN. Retracted: In vivo behavior of hydroxyapatite/β‐TCP /collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Implants Res 2015; 29:816-816. [PMID: 26249361 DOI: 10.1111/clr.12656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2015] [Indexed: 11/26/2022]
Abstract
Retraction: Maté Sánchez de Val JE , Calvo Guirado JL , Ramírez Fernández MP , Delgado Ruiz RA , Mazón P, De Aza PN . In vivo behavior of hydroxyapatite/β‐TCP /collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Impl Res . The above article, published online on August 7, 2015, in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal editor‐in‐chief, L Heitz‐Mayfield, and John Wiley & Sons Ltd. The retraction has been agreed due to image discrepancies resulting in unreliable data. It has not been possible to prove the validity of the images. Images in Figure 4 have been used in other publications representing different time points and materials. Images within Figure 4 have been manipulated to represent different time points and materials. Reference Maté Sánchez de Val JE , Calvo Guirado JL , Ramírez Fernández MP , Delgado Ruiz RA , Mazón P, De Aza PN . In vivo behavior of hydroxyapatite/β‐TCP /collagen scaffold in animal model. Histological, histomorphometrical, radiological, and SEM analysis at 15, 30, and 60 days. Clin Oral Impl Res . https://doi.org/10.1111/clr.12656
Collapse
Affiliation(s)
| | | | | | | | - Patricia Mazón
- Departamento de Materiales, Óptica y Tecnologia Electrónica, Universidad Miguel Hernández, Avda Universidad s/n, 03202, Elche, Alicante, Spain
| | - Piedad N De Aza
- Bioengineering Institute, Miguel Hernandez University, Avda Universidad s/n, 03202, Elche, Spain
| |
Collapse
|
15
|
Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat 2015; 3:95-104. [PMID: 30035046 PMCID: PMC5982383 DOI: 10.1016/j.jot.2015.05.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Large bone defects are serious complications that are most commonly caused by extensive trauma, tumour, infection, or congenital musculoskeletal disorders. If nonunion occurs, implantation for repairing bone defects with biomaterials developed as a defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials to be developed as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models for investigating their biocompatibility, mechanical properties, degradation, and interactional with culture medium or host tissues. The results of the in vitro experiment contribute significantly to the evaluation of direct cell response to the substitute biomaterial, and the in vivo tests constitute a step midway between in vitro tests and human clinical trials. Therefore, it is essential to develop or adopt a suitable in vivo bone defect animal model for testing bone substitutes for defect repair. This review aimed at introducing and discussing the most available and commonly used bone defect animal models for testing specific substitute biomaterials. Additionally, we reviewed surgical protocols for establishing relevant preclinical bone defect models with various animal species and the evaluation methodologies of the bone regeneration process after the implantation of bone substitute biomaterials. This review provides an important reference for preclinical studies in translational orthopaedics.
Collapse
Affiliation(s)
- Ye Li
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shu-Kui Chen
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin-Luan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu-Xiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Romanos GE, Delgado-Ruiz RA, Gómez-Moreno G, López-López PJ, Mate Sanchez de Val JE, Calvo-Guirado JL. Role of mechanical compression on bone regeneration around a particulate bone graft material: an experimental study in rabbit calvaria. Clin Oral Implants Res 2015; 29:612-619. [DOI: 10.1111/clr.12592] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Georgios E. Romanos
- Department of Periodontology; Stony Brook University; School of Dental Medicine; Stony Brook NY USA
| | - Rafael A. Delgado-Ruiz
- Department of Prosthodontics and Digital Technology; Stony Brook University; School of Dental Medicine; Stony Brook New York USA
| | - Gerardo Gómez-Moreno
- Department of Pharmacological Research in Dentistry, Periodontology and Implant Dentistry; Special Care in Dentistry; Faculty of Dentistry; University of Granada; Granada Spain
| | - Patricia J. López-López
- Department of General and Implant Dentistry; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | | | - Jose Luis Calvo-Guirado
- Department of Implant Dentistry; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| |
Collapse
|
17
|
Salomó-Coll O, Maté-Sánchez de Val JE, Ramírez-Fernández MP, Satorres-Nieto M, Gargallo-Albiol J, Calvo-Guirado JL. Osseoinductive elements for promoting osseointegration around immediate implants: a pilot study in the foxhound dog. Clin Oral Implants Res 2015; 27:e167-e175. [DOI: 10.1111/clr.12596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Affiliation(s)
- O. Salomó-Coll
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | | | | | - M. Satorres-Nieto
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | - J. Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | | |
Collapse
|
18
|
Ezirganli S, Kazancioglu HO, Mihmanli A, Sharifov R, Aydin MS. Effects of different biomaterials on augmented bone volume resorptions. Clin Oral Implants Res 2014; 26:1482-8. [DOI: 10.1111/clr.12495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Seref Ezirganli
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Bezmialem Vakif University; İstanbul Turkey
| | - Hakki O. Kazancioglu
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Bezmialem Vakif University; İstanbul Turkey
| | - Ahmet Mihmanli
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Bezmialem Vakif University; İstanbul Turkey
| | - Rasul Sharifov
- Department of Radiology; Faculty of Medicine; Bezmialem Vakif University; İstanbul Turkey
| | - Mehmet S. Aydin
- Department of Histology and Embryology; Faculty of Medicine; Bezmialem Vakif University; İstanbul Turkey
| |
Collapse
|
19
|
Calvo-Guirado JL, Maté-Sánchez JE, Delgado-Ruiz RA, Romanos GE, De Aza-Moya P, Velázquez P. Bone neo-formation and mineral degradation of 4Bone.(®) Part II: histological and histomorphometric analysis in critical size defects in rabbits. Clin Oral Implants Res 2014; 26:1402-6. [PMID: 25163802 DOI: 10.1111/clr.12465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To carry out the histological and histomorphometric plus radiological analysis of biphasic ceramic. MATERIALS AND METHOD In this study, porous HA/βTCP (4Bone(®) ) ceramic material was tested for the bone repairing capacity and osteoinductive potential in a New Zealand rabbit model. The ratio of the ceramic's components HA/βTCP was 60/40 (in wt%). RESULTS The 4Bone(®) showed significantly more bone formation in the pores and in the periphery of the graft than the control group. Histomorphometric analysis revealed that the ceramic material (66.43% ± 0.29) produced higher values of bone-to-implant contact (BIC) percentages (higher quality, closer contact); moreover, defect closure was significative higher in relation with control group (64.15% ± 3.52). CONCLUSIONS 4Bone(®) is a biocompatible, partially resorbable and osteoconductive grafting material. Biphasic graft material of HA/βTCP with a porosity of 95% without loading favors new bone formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Velázquez
- Bioengineering institute, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
20
|
Maté Sánchez de Val JE, Calvo Guirado JL, Delgado Ruiz RA, Gómez Moreno G, Ramírez Fernández MP, Romanos GE. Bone neo-formation and mineral degradation of 4Bone.®Part I: material characterization and SEM study in critical size defects in rabbits. Clin Oral Implants Res 2014; 26:1165-9. [DOI: 10.1111/clr.12420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 11/27/2022]
|
21
|
Calvo-Guirado JL, Ramírez-Fernández MP, Maté-Sánchez JE, Bruno N, Velasquez P, de Aza PN. Enhanced bone regeneration with a novel synthetic bone substitute in combination with a new natural cross-linked collagen membrane: radiographic and histomorphometric study. Clin Oral Implants Res 2014; 26:454-464. [PMID: 24720519 DOI: 10.1111/clr.12399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES 4Bone is a fully synthetic bioactive bone substitute composed of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (ß-TCP). This study aimed to investigate the effect of resorbable collagen membranes (RCM) on critical size defects in rabbit tibiae filled with this novel biphasic calcium phosphate at 15, 30, 45, and 60 days by radiological and histomorphometric analysis. MATERIAL AND METHODS Three critical size defects of 6 mm diameter were created in both tibiae of 20 New Zealand rabbits and divided into three groups according to the filling material: Group A (4Bone), Group B (4Bone plus RCM), and Group C (unfilled control group). At each of the four study periods, five rabbits were sacrificed. Anteroposterior and lateral radiographs were taken. Samples were processed for observation under light microscopy. RESULTS At the end of treatment, radiological analysis found that cortical defect closure was greater in Group B than Group A, and radiopacity was clearly lower and more heterogeneous in Group A cortical defects than in Group B. There was no cortical defect closure in Group C. Histomorphometric evaluation showed significant differences in newly formed bone and cortical closure in Group B compared with Groups A and C, with the presence of higher density newly formed bone in cortical and medullar zones. CONCLUSIONS Biphasic calcium phosphate functioned well as a scaffolding material allowing bone ingrowth and mineralization. The addition of absorbable collagen membranes enhanced bone gain compared with non-membrane-treated sites. This rabbit study provides radiological and histological evidence confirming the suitability of this new material for guided tissue regeneration of critical defects.
Collapse
Affiliation(s)
- José Luis Calvo-Guirado
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Maria P Ramírez-Fernández
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Jose E Maté-Sánchez
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Negri Bruno
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Pablo Velasquez
- Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| | - Piedad N de Aza
- Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
22
|
Caubet J, Ramis JM, Ramos-Murguialday M, Morey MÁ, Monjo M. Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss® or BoneCeramic®. Clin Oral Implants Res 2014; 26:727-35. [PMID: 24684367 DOI: 10.1111/clr.12380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Although the clinical success of Bio-Oss(®) and BoneCeramic(®) has been corroborated by histologic and histomorphometric findings, the biological events that occur during healing after maxillary sinus floor elevation (MSFE) are unknown. Here, we evaluated biopsies of grafted bone with a mixture of autologous bone and Bio-Oss(®) or BoneCeramic(®) after two different healing time periods to understand the molecular process underlying bone formation after MSFE. MATERIAL AND METHODS Seven patients, following a bilateral split-mouth design model and needing a MSFE to allow implant placement, were recruited for this study. Right or left sinuses were grafted with autologous maxillary bone combined either with Bio-Oss(®) or BoneCeramic(®) , respectively. Twenty biopsies were taken at the time of implant insertion after 4-5 months or 6-8 months of MSFE, and analyzed by micro-computed tomography (microCT) and gene-expression analysis. RESULTS MicroCT analysis revealed no differences in the morphometric parameters or BMD either after 4-5 months or 6-8 months of MSFE between Bio-Oss(®) and BoneCeramic(®) . At molecular level, a higher expression of bone forming gene Runx2 was observed after 4-5 months of MSFE in the Bio-Oss(®) compared with the BoneCeramic(®) group. CONCLUSIONS Our results indicate that differences found at the molecular level between Bio-Oss(®) and BoneCeramic(®) are not translated to important differences in the 3D microstructure and BMD of the grafted bone.
Collapse
Affiliation(s)
- Jorge Caubet
- Bone regeneration and Oral and Maxillofacial Surgery Unit (GBCOM), Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
23
|
De Aza PN, Peña JI, Luklinska ZB, Meseguer-Olmo L. Bioeutectic ® Ceramics for Biomedical Application Obtained by Laser Floating Zone Method. In vivo Evaluation. MATERIALS 2014; 7:2395-2410. [PMID: 28788574 PMCID: PMC5453347 DOI: 10.3390/ma7042395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 11/16/2022]
Abstract
In this study, the Bioeutectic® blocks were inserted into the critical size defects of eight rabbits, using both tibiae, and the physical and chemical nature of the remodeled interface between the Bioeutectic® implants and the surrounding bone were performed at four and 15 months. The results showed a new fully mineralized bone growing in direct contact with the implants. The ionic exchange, taking place at the implant interface with the body fluids was essential in the process of the implant integration through a dissolution-precipitation-transformation mechanism. The study found the interface biologically and chemically active over the 15 months implantation period. The osteoblastic cells migrated towards the interface and colonized the surface at the contact areas with the bone. The new developed apatite structure of porous morphology mimics natural bone.
Collapse
Affiliation(s)
- Piedad N De Aza
- Instituto de Bioingenieria, Universidad Miguel Hernandez, Avda. Ferrocarril s/n, Elche 03202, Alicante, Spain.
| | - Jose I Peña
- Department of Science and Technology of Materials and Fluids, Material Science Institute of Aragon, University of Zaragoza-CSIC, c/ Maria de Luna 3, Zaragoza 50018, Spain.
| | - Zofia B Luklinska
- Materials Science Department, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road London E1 4NS, UK.
| | - Luis Meseguer-Olmo
- Unidad de Bioingeniería ósea, Servicio de Cirugía Ortopédica, Hospital Clínico Universitario Virgen de la Arrixaca, Universidad de Murcia, Murcia 30120, Spain.
| |
Collapse
|
24
|
Porous titanium granules in critical size defects of rabbit tibia with or without membranes. Int J Oral Sci 2014; 6:105-10. [PMID: 24556954 PMCID: PMC5130058 DOI: 10.1038/ijos.2014.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/11/2013] [Indexed: 11/28/2022] Open
Abstract
Recently, porous titanium granules (PTGs) have been indicated for the preservation of the dimensions of post-extraction sockets, as a filler in sinus lift procedures and for the treatment of peri-implant and periodontal defects, based on the osteoconductivity and dimensional stability of the titanium granules. However, there is a lack of information regarding the use of this material in larger defects and in conjunction with membranes. The objective of this study is to test the behavior of PTGs used to fill critical size defects in rabbit tibiae, with and without membranes. Critical defects were created in both tibiae of rabbits, divided randomly into three groups: Group A (defect filled with PTG), Group B (defect filled with PTG+collagen membrane) and a control group (empty defect). After six weeks, histomorphometric analysis was performed. The results showed more defect closures at the cortical area (87.37%±2.2%) and more bone formation at the marrow area (57.6%±1.3%) in Group B, in comparison with the other groups (P<0.05); the use of membranes improved the material stability expressed as more percentages of the original material when membranes were used (P<0.05). Finally, inflammatory reactions were observed when the granules were not protected by membranes. In spite of the limitations of this animal study, it may be concluded that PTG particles are osteoconductive and allow bone growth. The PTG particles must be covered by a membrane, especially when grafting larger defects, in order to control particle migration, promote clot stabilization and separate the PTG graft from undesired soft tissue cells.
Collapse
|
25
|
Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Teßmar J, Vorndran E. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 2014; 6:015006. [PMID: 24429776 DOI: 10.1088/1758-5082/6/1/015006] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 3D printing technique based on cement powders is an excellent method for the fabrication of individual and complex bone substitutes even in the case of large defects. The outstanding bone remodeling capacity of biphasic calcium phosphates (BCPs) containing hydroxyapatite (HA) as well as tricalcium phosphate (TCP) in varying ratios makes the adaption of powder systems resulting in BCP materials to this fabrication technique a desirable aim. This study presents the synthesis and characterization of a novel powder system for the 3D printing process, intended for the production of complexly shaped BCP scaffolds by a hydraulic setting reaction of calcium carbonate and TCP with phosphoric acid. The HA/TCP ratio in the specimens could be tailored by the calcium/phosphate ratio of the starting powder. The scaffolds could be fabricated with a dimensional accuracy of >96.5% and a minimal macro pore size of 300 µm. Independent of the phase composition the printed specimens showed a microporosity of approximately 68%, while the compressive strength strongly depended on the chemical composition and increased with rising TCP content in the scaffolds to a maximum of 1.81 MPa. Post-treatment of the scaffolds with a polylactic-co-glycolic acid-solution enhanced the mechanical properties by a factor of 8. In vitro studies showed that all BCP scaffolds were cytocompatible and enhanced the cell viability as well as the cell proliferation, as compared with pure TCP. Cell proliferation is even better on BCP when compared to HA and cell viability is in a similar range on these materials.
Collapse
Affiliation(s)
- Miguel Castilho
- Institute of Mechanical Engineering/IST, Technical University of Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Calvo-Guirado JL, Ramírez-Fernández MP, Delgado-Ruíz RA, Maté-Sánchez JE, Velasquez P, de Aza PN. Influence of biphasic β-TCP with and without the use of collagen membranes on bone healing of surgically critical size defects. A radiological, histological, and histomorphometric study. Clin Oral Implants Res 2013; 25:1228-1238. [PMID: 24025159 DOI: 10.1111/clr.12258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to investigate, by means of radiological and histomorphometric analysis, the effect of resorbable collagen membranes on critical size defects (CSD) in rabbit tibiae filled with biphasic calcium phosphate. MATERIALS AND METHODS Three CSD of 6 mm diameter were created in both tibiae of 20 New Zealand rabbits and divided into three groups according to the filling material: Group A (Ossceram), Group B (Ossceram plus Alveoprotect membrane), and Group C (unfilled control group). Five animals from each group were sacrificed after 15, 30, 45, and 60 days. Anteroposterior and lateral radiographs were taken. Samples were processed for observation under light microscopy. RESULTS At the end of treatment, radiological analysis found that cortical defect closure was greater in Group B than Group A, and radiopacity was clearly lower and more heterogeneous in the Group A cortical defects than in Group B. There was no cortical defect closure in Group C. Histomorphometric evaluation showed significant differences in newly formed bone and cortical closure in Group B compared with Groups A and C, with the presence of higher density newly formed bone in cortical and medullar zones. There was no cortical defect closure or medullar bone formation in Group C. CONCLUSIONS Biphasic calcium phosphate functioned well as a scaffolding material allowing mineralized tissue formation. Furthermore, the addiction of absorbable collagen membranes enhanced bone gain compared with non-membrane-treated sites.
Collapse
Affiliation(s)
- Jose L Calvo-Guirado
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Maria P Ramírez-Fernández
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | | | - Jose E Maté-Sánchez
- Department of Implant Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
| | - Pablo Velasquez
- Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| | - Piedad N de Aza
- Bioengineering Institute, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
27
|
Maté-Sánchez de Val JE, Mazón P, Guirado JLC, Ruiz RAD, Ramírez Fernández MP, Negri B, Abboud M, De Aza PN. Comparison of three hydroxyapatite/β-tricalcium phosphate/collagen ceramic scaffolds: an in vivo study. J Biomed Mater Res A 2013; 102:1037-46. [PMID: 23649980 DOI: 10.1002/jbm.a.34785] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/09/2022]
Abstract
Calcium-phosphate ceramics, which have a composition similar to bone mineral, represent a potentially interesting synthetic bone graft substitute. In the present study, three porous hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP)/collagen ceramic scaffolds were developed, characterized, and tested for their bone repairing capacity and osteoinductive potential in a New Zealand Rabbit model. The ratio of the ceramic components HA/-TCP/collagen varied from 40/30/30 to 50/20/30 and 60/20/20 (in wt %), respectively. None of the ceramic scaffolds succeeded in completely bridging the 6 mm calvarian defect with new bone after 60 days implantation. 60/20/20 ceramic scaffolds showed significantly more bone formation in the pores and in the periphery of the graft than the other two materials. Histomorphometric analysis revealed that the 40/30/30 scaffold produced best bone-to-implant contact (67.23 ± 0.34% with higher quality, closer contact) in comparison with 50/20/30 (54.87 ± 0.32%), and 60/20/20 (48.53 ± 0.31%). Both physicochemical and structural properties of the ceramic composites affected their in vivo behavior, either dependently or independently, emphasizing the importance of assessing bone repair parameters individually. The scaffolds may offer clinical applications in reconstructive surgery for treating bone pathologies.
Collapse
|
28
|
Lee SB, Kwon JS, Lee YK, Kim KM, Kim KN. Bioactivity and mechanical properties of collagen composite membranes reinforced by chitosan and β-tricalcium phosphate. J Biomed Mater Res B Appl Biomater 2012; 100:1935-42. [DOI: 10.1002/jbm.b.32760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/26/2012] [Accepted: 04/30/2012] [Indexed: 11/06/2022]
|
29
|
Kämmerer PW, Palarie V, Schiegnitz E, Nacu V, Draenert FG, Al-Nawas B. Influence of a collagen membrane and recombinant platelet-derived growth factor on vertical bone augmentation in implant-fixed deproteinized bovine bone--animal pilot study. Clin Oral Implants Res 2012; 24:1222-30. [PMID: 22762383 DOI: 10.1111/j.1600-0501.2012.02534.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Combinations of bone substitute block materials with membrane techniques as well as with growth factors are possible options to enhance the prognosis of vertical bone augmentation. Therefore, the aim of the pilot study was to compare the influence of a collagen membrane and a signal protein (rhPDGF-BB) on vertical bone augmentation with a stable fixed block material (deproteinized bovine bone [DBB]). MATERIALS AND METHODS In 12 rabbits, a DBB-block was implant-fixed on the tibia in a split-leg-design. Included were: DBB only (control), DBB + collagen membrane (test), DBB + rhPDGF-BB (test) and DBB + rhPDGF-BB + collagen membrane (test). 24 samples were examined after 3 (n = 12) and 6 weeks (n = 12). Calculated parameters were new bone area (NBA;%), new vertical bone height (VBH; mm). Due to the pilot character of this study, single values are shown descriptively only. RESULTS After 3 weeks, there were constant higher NBA values in the rhPDGF-BB-group without membrane (NBA (%) DBB: 30/16/4; DBB + membrane: 25/17/7, DBB + rhPDGF-BB: 40/33/34, DBB + rhPDGF-BB + membrane: 0/30/16; VBH (mm) DBB: 1.2/1.2/1, DBB + membrane: 0.7/0.9/1, DBB + rhPDGF-BB: 0.7/0.9/1, DBB + rhPDGF-BB + membrane: 0/1.1/1). After 6 weeks, both membrane groups showed a constant higher NBA and VBH independent to the use of rhPDGF-BB (NBA DBB: 3/0/5, DBB + membrane: 20/35/31, DBB + rhPDGF-BB: 5/8/4, DBB + rhPDGF-BB + membrane: 31/35/40; VBH DBB: 0.3/0.3/0.6, DBB + membrane: 1.6/2.4/2.1, DBB + rhPDGF-BB: 0.4/0.7/0.8, DBB + rhPDGF-BB + membrane: 1.8/2/1.8). CONCLUSIONS For vertical augmentation, the addition of rhPDGF-BB to DBB-blocks may increase early bone growth. In the later phase, the use of a collagen membrane enhances new bone volume and height to a significant greater extend. Even if the results are higher than those in the non-membrane groups, the low gain of bone after the short time periods still needs improvement.
Collapse
Affiliation(s)
- P W Kämmerer
- Department of Oral, Maxillofacial and Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 2012; 8:963-77. [PMID: 21945826 DOI: 10.1016/j.actbio.2011.09.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 01/01/2023]
Abstract
Biphasic, triphasic and multiphasic (polyphasic) calcium orthophosphates have been sought as biomaterials for reconstruction of bone defects in maxillofacial, dental and orthopedic applications. In general, this concept is determined by advantageous balances of more stable (frequently hydroxyapatite) and more resorbable (typically tricalcium orthophosphates) phases of calcium orthophosphates, while the optimum ratios depend on the particular applications. Therefore, all currently known biphasic, triphasic and multiphasic formulations of calcium orthophosphate bioceramics are sparingly soluble in water and, thus, after being implanted they are gradually resorbed inside the body, releasing calcium and orthophosphate ions into the biological medium and, hence, seeding new bone formation. The available formulations have already demonstrated proven biocompatibility, osteoconductivity, safety and predictability in vitro, in vivo, as well as in clinical models. More recently, in vitro and in vivo studies have shown that some of them might possess osteoinductive properties. Hence, in the field of tissue engineering biphasic, triphasic and multiphasic calcium orthophosphates represent promising biomaterials to construct various scaffolds capable of carrying and/or modulating the behavior of cells. Furthermore, such scaffolds are also suitable for drug delivery applications. This review summarizes the available information on biphasic, triphasic and multiphasic calcium orthophosphates, including their biomedical applications. New formulations are also proposed.
Collapse
|