1
|
Dupre N, Riou MC, Isaac J, Ferre F, Cormier-Daire V, Kerner S, de La Dure-Molla M, Nowwarote N, Acevedo AC, Fournier BPJ. Root resorptions induced by genetic disorders: A systematic review. Oral Dis 2024; 30:3799-3812. [PMID: 38566363 DOI: 10.1111/odi.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Root resorption in permanent teeth is a common pathological process that often follows dental trauma or orthodontic treatment. More rarely, root resorption is a feature of genetic disorders and can help with diagnosis. Thus, the present review aims to determine which genetic disorders could induce pathological root resorptions and thus which mutated genes could be associated with them. METHODS We conducted a systematic review following the PRISMA guidelines. Articles describing root resorptions in patients with genetic disorders were included from PubMed, Embase, Web of Science, and Google Scholar. We synthesized the genetic disorder, the type, severity, and extent of the resorptions, as well as the other systemic and oral symptoms and histological features. RESULTS The synthetic analysis included 25 studies among 937 identified records. We analyzed 21 case reports, three case series, and one cohort study. Overall, we highlighted 14 different pathologies with described root resorptions. Depending on the pathology, the sites of resorption, their extent, and their severity showed differences. CONCLUSION With 14 genetic pathologies suspected to induce root resorptions, our findings are significant and enrich a previous classification. Among them, three metabolic disorders, three calcium-phosphorus metabolism disorders, and osteolysis disorders were identified.
Collapse
Affiliation(s)
- Nicolas Dupre
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Margot C Riou
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Juliane Isaac
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - François Ferre
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Valérie Cormier-Daire
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Stéphane Kerner
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
- Post-Graduate Program in Periodontology and Implant Dentistry, EFP, Université Paris Cité, Paris, France
| | - Muriel de La Dure-Molla
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Nunthawan Nowwarote
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Ana Carolina Acevedo
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
| | - Benjamin P J Fournier
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Hassan GS, AbouZaid BH, Ghouraba RF, Ibrahim HF. Cemental and alveolar bone defects after chronic exposure to amoxicillin in rats (histopathologic and radiographic study). Arch Oral Biol 2024; 158:105870. [PMID: 38091768 DOI: 10.1016/j.archoralbio.2023.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVES This study aimed to shed new light on the potential detrimental effects on cementum and adjacent alveolar bone after chronic exposure to amoxicillin. METHODS Six pregnant adult Albino rats were equally divided into two groups. Saline solution and amoxicillin (100 mg/Kg) were given to rats of control and amoxicillin group, respectively from the 13th to the 21st day of pregnancy. The same treatment was given to the pups till the 42nd day. The cementum of the first molar teeth and the surrounding alveolar bone were examined qualitatively by histopathological and scanning electron microscope, and quantitatively by energy dispersive X-ray spectroscopy and cone beam computed tomography. RESULTS Amoxicillin group depicted cemental and alveolar bone defects along with resorption lacunae. Statistically significant decreases in calcium and calcium/phosphorus ratio in cementum and in calcium only in alveolar bone were evident (p ≤ 0.05). Overall cementum and alveolar bone densities also showed statistically significant decreases (p ≤ 0.05). CONCLUSION Chronic amoxicillin administration displayed destructive effects on cementum and the surrounding alveolar bone which may disturb tooth attachment integrity. Therefore, it is recommended to minimize its haphazard usage during pregnancy and early childhood.
Collapse
Affiliation(s)
- Gihan S Hassan
- Assistant professor of Oral Biology, Faculty of Dentistry, Tanta University, Egypt.
| | - Basant H AbouZaid
- Lecturer of Oral Pathology, Faculty of Dentistry, Tanta University, Egypt.
| | - Rehab F Ghouraba
- Lecturer of Oral Medicine, Periodontology, Oral diagnosis and Radiology, Faculty of Dentistry, Tanta University, Egypt.
| | - H F Ibrahim
- Lecturer of Oral Biology, Faculty of Dentistry, Tanta University, Egypt.
| |
Collapse
|
4
|
Nibali L, Tomlins P, Akcalı A. Radiographic morphology of intrabony defects in the first molars of patients with localized aggressive periodontitis: Comparison with health and chronic periodontitis. J Periodontal Res 2018; 53:582-588. [PMID: 29660823 DOI: 10.1111/jre.12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to describe the radiographic features of the first molars of patients with localized aggressive periodontitis (LAgP) and of their associated intrabony defects and to compare them with a control sample of chronic periodontitis cases and healthy subjects. METHODS Data from a total of 93 patients were included in this analysis. First, dental panoramic tomograms of 34 patients with LAgP (131 first molars) and 30 periodontally healthy patients (110 first molars) were compared. Then, periapical radiographs of the first molars of the same patients with LAgP and of 29 patients with chronic periodontitis affected by intrabony defects were analysed. RESULTS Shorter root trunks were associated with the presence of intrabony defects in patients with LAgP (P = .002 at multilevel logistic regression), also when LAgP molars were compared with healthy subjects (P = .036). Although no difference in defect depth and angle was noted between LAgP and chronic periodontitis intrabony defects, LAgP intrabony defects appeared to be more frequently symmetrical and arch-shaped than in chronic periodontitis (P = .008), with positive predictive value and negative predictive value of for 'wide arch' defect of 87.3% (95% CI = 77.2%-93.3%) and 32.3% (95% CI = 27.7%-37.2%) respectively. CONCLUSION First molars of patients with LAgP affected by intrabony defects may have some distinct radiographic anatomical characteristics to those of healthy subjects. The shape of intrabony defects seems to differ between LAgP and chronic periodontitis cases. Further studies need to confirm these features and investigate if they are related to the initiation and progression of periodontitis.
Collapse
Affiliation(s)
- L Nibali
- Centre for Immunobiology & Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - P Tomlins
- Bart's and the London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - A Akcalı
- Centre for Immunobiology & Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| |
Collapse
|
12
|
Crespo Abelleira AC, Rodríguez Cobos MA, Fuentes Boquete IM, Castaño Oreja MT, Jorge Barreiro FJ, Rodríguez Pato RB. Morphological study of root surfaces in teeth with adult periodontitis. J Periodontol 1999; 70:1283-91. [PMID: 10588491 DOI: 10.1902/jop.1999.70.11.1283] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Our study correlates the histological alterations in the cementum (especially resorption areas) of teeth with the different stages of adult periodontitis. METHODS Sixty-seven teeth affected by adult periodontitis and 7 healthy teeth extracted from patients over 40 years old were used. The teeth were divided into 3 groups according to radiographic data: group 1: five teeth with bone loss less than one-third of the normal alveolar height; group 2: thirty-one teeth with bone loss between one and two thirds; and group 3: thirty-one teeth with bone loss greater than two thirds. The samples were prepared for light and scanning electron microscopy, considering the gingival, middle, and apical thirds in each root. RESULTS Two control teeth, 4 teeth in group 1, and all teeth in groups 2 and 3 showed resorption areas. Regarding the gingival third, the control teeth did not show any resorption, while 25% of affected teeth in group 1, 38.7% of teeth in group 2, and 35.5% of teeth in group 3 exhibited resorption. Regarding the middle third, 50% of affected teeth belonging to the control group and group 1; 67.7% of teeth in group 2; and 87.1% of teeth in group 3 showed resorption. Regarding the apical third, all teeth belonging to the control group and group 1 showed resorption, while 93.5% and 87.1% of teeth in groups 2 and 3, respectively, exhibited resorption. Most of the resorptions did not extend beyond the cementum. However, in 29.0% of teeth in group 2 and 38.7% of teeth in group 3, resorption had spread as far as the dentin. All the lesions in the control group and group 1 were practically repaired, while only 71.0% of teeth in group 2 and 61.3% of teeth in group 3 showed some sign of reparation. However, in groups 2 and 3, practically all lesions affecting dentin were repaired. CONCLUSIONS These data suggest that the spread of root resorption is associated with inflammation. This study also suggests that the capacity for repair of root resorption is diminished with greater severity of periodontitis.
Collapse
Affiliation(s)
- A C Crespo Abelleira
- Department of Morphological Sciences, Faculty of Medicine and Dentistry, University of Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
D'Errico JA, MacNeil RL, Takata T, Berry J, Strayhorn C, Somerman MJ. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone 1997; 20:117-26. [PMID: 9028535 DOI: 10.1016/s8756-3282(96)00348-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Periodontal disease is marked by inflammation and subsequent loss and/or damage to tooth-supporting tissues including bone, cementum, and periodontal ligament. A key tissue in the initial process of periodontal development as well as regeneration following periodontal disease is cementum. Research efforts aimed toward understanding mechanisms involved in periodontal development and regeneration, and in particular the formation of root cementum, have been hampered by an inability to isolate and culture cells involved in cementum production (i.e., cementoblasts). Much has been learned regarding the processes and mechanisms involved in bone formation and function from experiments using bone cell cultures. Therefore, the purpose of this study was to develop a strategy whereby cementoblasts could be isolated, cultured, and characterized. As a first step, using in situ hybridization, we determined the timed and spatial expression of mineral-associated proteins during first molar root development in CD-1 mice. These proteins included dentin sialoprotein (DSP), osteopontin (OPN), bone sialoprotein (BSP), osteocalcin (OCN), and type I collagen. During root development in mice BSP, OPN, and OCN mRNAs were expressed selectively by cells lining the tooth root surface--cementoblasts--with high levels of expression at day 41. Importantly, at this time point BSP, OPN, and OCN mRNAs were not expressed throughout the periodontal ligament. These findings provided us with markers selective to root-lining cells, or cementoblasts, in situ, and established the time (day 41) for isolating cells for in vitro studies. To isolate cells from tissues adherent to the root surface, enzymatic digestion was used, similar to what are now considered classical techniques for isolation of osteoblasts. To determine whether cells in vitro contained root-lining cells and cementoblasts, cultured cells were analyzed for expression of mineral-associated proteins. Cells within this heterogeneous primary population expressed type I collagen, BSP, OPN, and OCN as determined by in situ hybridization. In contrast, cells within this population did not express dentin sialoprotein, an odontoblast-specific protein. These procedures have provided a means to obtain root-lining cells in vitro that can now be cloned and used for studies directed at determining the properties of root-lining cells, or cementoblasts, in vitro.
Collapse
Affiliation(s)
- J A D'Errico
- Department of Periodontics/Prevention/Geriatrics and Pharmacology, University of Michigan, Ann Arbor, USA.
| | | | | | | | | | | |
Collapse
|