Nguyen QBD, Vu MAN, Hebert AA. Insect repellents: An updated review for the clinician.
J Am Acad Dermatol 2023;
88:123-130. [PMID:
30395919 DOI:
10.1016/j.jaad.2018.10.053]
[Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 11/25/2022]
Abstract
Malaria, Zika virus, West Nile virus, Dengue fever, and Lyme disease are common causes of morbidity and mortality around the world. While arthropod bites may cause local inflammation and discomfort, a greater concern is the potential to develop deadly systemic infection. The use of insect repellents (IRs) to prevent systemic infections constitutes a fundamental public health effort. Cost effectiveness, availability, and high efficacy against arthropod vectors are key characteristics of an ideal IR. Currently, numerous IRs are available on the market, with N,N-diethyl-3-methylbenzamide (DEET) being the most widely used. DEET has an excellent safety profile and remarkable protection against mosquitoes and various other arthropods. Other Environmental Protection Agency-registered IR ingredients (eg, permethrin, picaridin, IR3535, oil of lemon eucalyptus, oil of citronella, catnip oil, and 2-undecanone) are alternative IRs of great interest because some of these ingredients have efficacies comparable to that of DEET. These alternative IRs possess low toxicity and favorable customer experiences in use (eg, cosmetically pleasant, naturally occurring). This review summarizes the currently available Environmental Protection Agency-registered IRs, including their origins, mechanisms of action, side effect profiles, and available formulations. This review will enable the clinician to select the best IR option to meet a patient's needs and provide the greatest protection from arthropod bites and their sequelae.
Collapse