Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z. Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves.
Arch Med Sci 2013;
9:527-34. [PMID:
23847677 PMCID:
PMC3701969 DOI:
10.5114/aoms.2013.33433]
[Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 10/21/2011] [Accepted: 12/16/2011] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION
The subject of the experiment was bacterial nanocellulose, a natural polymer produced by bacteria - Gluconacetobacter xylinus. Following a specific modification process a cartilage-like material for restoration of damaged tissues may be produced. The obtained implants with excellent biocompatibility, mouldability, biophysical and chemical properties perfectly fit the needs of reconstructive surgery. The goal of the experiment was to develop and analyze cellulosic guidance channels in vivo for the reconstruction of damaged peripheral nerves.
MATERIAL AND METHODS
The experiments were conducted on Wistar rats, femoral nerve. Cellulose was produced according to a self-patented method. In the experimental group tubulization was applied, whereas in the control traditional end-to-end connection was used. Observation time was 30, 60, 90, and 180 days. Results evaluation included histological analysis and postoperative observation of motor recovery.
RESULTS
The overgrowth of connective tissue and disorganisation of neural structures was evident in 86.67% of control specimens, while for cellulosic group it was only 35% (p = 0.0022). Tubulization prevented the excessive proliferation of connective tissue and isolated from penetration with scar tissue. Autocannibalism, being probably an evidence of neurotrophic factors amassment, was observed in cellulosic group but not in the control one. Motor recovery did not differ significantly (p > 0.05). Biocompatibility of implants was affirmed by very small level of tissue response and susceptibility to vascularisation.
CONCLUSIONS
Cellulosic neurotubes effectively prevent the formation of neuromas. They are of very good biocompatibility and allow the accumulation of neurotrophic factors inside, thus facilitating the process of nerve regeneration.
Collapse