1
|
Jalšić L, Lytvyn V, Elahi SM, Hrapovic S, Nassoury N, Chahal PS, Gaillet B, Gilbert R. Inducible HEK293 AAV packaging cell lines expressing Rep proteins. Mol Ther Methods Clin Dev 2023; 30:259-275. [PMID: 37560197 PMCID: PMC10407821 DOI: 10.1016/j.omtm.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Packaging or producer cell lines for scalable recombinant adeno-associated virus (rAAV) production have been notoriously difficult to create due in part to the cytostatic nature of the Rep proteins required for AAV production. The most difficult challenge being creating AAV packaging cell lines using HEK293 parental cells, currently the best mammalian platform for rAAV production due to the constitutive expression of E1A in HEK293 cells, a key REP transcription activator. Using suspension and serum-free media adapted HEK293SF carrying a gene expression regulation system induced by addition of cumate and coumermycin, we were able to create REP-expressing AAV packaging cells. This was achieved by carefully choosing two of the AAV Rep proteins (Rep 40 and 68), using two inducible promoters with different expression levels and integrating into the cells through lentiviral vector transduction. Three of our best clones produced rAAV titers comparable to titers obtained by standard triple plasmid transfection of their parental cells. These clones were stable for up to 7 weeks under continuous cultures condition. rAAV production from one clone was also validated at scale of 1 L in a wave bioreactor using serum-free suspension culture.
Collapse
Affiliation(s)
- Lovro Jalšić
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Sabahudin Hrapovic
- Advanced Biomaterials and Chemical Synthesis Team, Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Nasha Nassoury
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Parminder Singh Chahal
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
| | - Bruno Gaillet
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
| | - Rénald Gilbert
- Département de Génie Chimique, Université Laval, Québec, QC G1V0A6, Canada
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montréal, QC H3A 0E9 Canada
| |
Collapse
|
2
|
Virag T, Cecchini S, Kotin RM. Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy. Hum Gene Ther 2009; 20:807-17. [PMID: 19604040 DOI: 10.1089/hum.2009.092] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Establishing pharmacological parameters, such as efficacy, routes of administration, and toxicity, for recombinant adeno-associated virus (rAAV) vectors is a prerequisite for gaining acceptance for clinical applications. In fact, even a therapeutic window, that is, the dose range between therapeutic efficacy and toxicity, has yet to be determined for rAAV in vivo. Multiphase clinical trials investigating the safety and efficacy of recombinant AAV-based therapeutics will require unprecedented vector production capacity to meet the needs of preclinical toxicology studies, and the progressive clinical protocol phases of safety/dose escalation (phase I), efficacy (phase II), and high-enrollment, multicenter evaluations (phase III). Methods of rAAV production capable of supporting such trials must be scalable, robust, and efficient. We have taken advantage of the ease of scalability of nonadherent cell culture techniques coupled with the inherent efficiency of viral infection to develop an rAAV production method based on recombinant baculovirus-mediated expression of AAV components in insect-derived suspension cells.
Collapse
Affiliation(s)
- Tamas Virag
- Molecular Virology and Gene Delivery Section, Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
3
|
Aucoin MG, Perrier M, Kamen AA. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 2008; 26:73-88. [DOI: 10.1016/j.biotechadv.2007.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/28/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
|
4
|
Ulusoy A, Bjorklund T, Hermening S, Kirik D. In vivo gene delivery for development of mammalian models for Parkinson's disease. Exp Neurol 2008; 209:89-100. [DOI: 10.1016/j.expneurol.2007.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 12/21/2022]
|
5
|
Abstract
Recombinant adeno-associated virus (rAAV) is a prototypical gene therapy vector characterized by excellent safety profiles, wide host range, and the ability to transduce differentiated cells. Numerous rAAV-based vectors providing efficient and sustained expression of transgenes in target tissues have been developed for preclinical studies. Interest in rAAV has been driven by advances in production methods originally developed for rAAV serotype 2 vectors and expanded to include alternative serotypes. The transition to clinical trials is dependent on the development of scalable production methods of Good Manufacturing Practice-grade vectors described in this review.
Collapse
Affiliation(s)
- S Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Alachua, FL 32615, USA.
| |
Collapse
|