1
|
Zhou JR, Zhang X, Zhao YL, Yang JF, Zhang JP, Cao XY, Lu Y, Liu DY, Lyu FY, Ouyang J, Lu PH. [Clinical characteristics and prognosis of 34 cases of acute myeloid leukemia with FLT3 internal tandem duplication and MLL gene rearrangement]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:751-756. [PMID: 30369187 PMCID: PMC7342257 DOI: 10.3760/cma.j.issn.0253-2727.2018.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 11/05/2022]
Abstract
Objective: To analyze the clinical characteristics and prognosis of 34 cases of acute myeloid leukemia (AML) with FLT3 internal tandem duplication (FLT3-ITD) and MLL gene rearrangement. Methods: The clinical data of 34 AML patients with FLT3-ITD and MLL gene rearrangement was compared and analyzed for the therapeutic efficacy, prognostic factors when treated with chemotherapy, chemotherapy combined with targeted therapy or allogenic hematopoietic stem cell transplantation (allo-HSCT). Results: Of the thirty-four cases with median age 41 (4-71) years old, 63.6% presented with white blood cells (WBC) greater than 30×10(9)/L, 39.4% greater than 50 × 10(9)/L respectively on admission. M(5) (35.3%) made up the highest proportion. The cytogenetic abnormality reached 61.8%, of which the complex cytogenetic abnormality accounted for 11.8%. Eleven patients (32.35%) had both FLT3-ITD and MLL gene abnormalities. In addition to FLT3 and MLL abnormalities, 23 patients (67.6%) had one or more other gene abnormalities (multiple gene abnormalities). Of the 34 cases, 29.4% patients went into complete remission (CR) after two courses of chemotherapy. 20.6% (7 patients) went into CR after 3 or more courses of chemotherapy. The rate of early relapse in the CR group was 52.9%. Patients with WBC>50×10(9)/L or multiple gene abnormalities had a lower remission rate (7.7%, 5.4%) after two courses of chemotherapy. CR rate for the patients with more than three gene abnormalities was 0. The total 2-year overall survival (OS) in the 34 patients was 28.8% (95% CI 13.5%-46.0%) and the disease-free survival (DFS) was 27.1% (95% CI 12.5%-44.0%). Of the 18 patients treated with chemotherapy alone or chemotherapy combined with targeted therapy, 17 cases died within 2 years and 1 lost follow-up after giving up treatment. For the 16 patients received allo-HSCT, the 3-year OS was 43.4% (95% CI 13.7%-70.4%) and DFS 42.7% (95% CI 13.4%-69.7%). Conclusion: AML patients with FLT3-ITD and MLL gene rearrangement often presented with M(5), accompanied by hyperleukocytosis, cytogenetic or multiple gene abnormalities. Those patients were observed to have low response rate and high early relapse when treated with chemotherapy without allo-HSCT. Patients had multiple gene abnormalities may be an important poor prognostic factor. Allo-HSCT is an effective treatment which could significantly improve the prognosis and survival of AML patients with FLT3-ITD and MLL gene abnormalities.
Collapse
Affiliation(s)
- J R Zhou
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bodoor K, Haddad Y, Alkhateeb A, Al-Abbadi A, Dowairi M, Magableh A, Bsoul N, Ghabkari A. DNA hypermethylation of cell cycle (p15 and p16) and apoptotic (p14, p53, DAPK and TMS1) genes in peripheral blood of leukemia patients. Asian Pac J Cancer Prev 2014; 15:75-84. [PMID: 24528084 DOI: 10.7314/apjcp.2014.15.1.75] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Aberrant DNA methylation of tumor suppressor genes has been reported in all major types of leukemia with potential involvement in the inactivation of regulatory cell cycle and apoptosis genes. However, most of the previous reports did not show the extent of concurrent methylation of multiple genes in the four leukemia types. Here, we analyzed six key genes (p14, p15, p16, p53, DAPK and TMS1) for DNA methylation using methylation specific PCR to analyze peripheral blood of 78 leukemia patients (24 CML, 25 CLL, 12 AML, and 17 ALL) and 24 healthy volunteers. In CML, methylation was detected for p15 (11%), p16 (9%), p53 (23%) and DAPK (23%), in CLL, p14 (25%), p15 (19%), p16 (12%), p53 (17%) and DAPK (36%), in AML, p14 (8%), p15 (45%), p53 (9%) and DAPK (17%) and in ALL, p15 (14%), p16 (8%), and p53 (8%). This study highlighted an essential role of DAPK methylation in chronic leukemia in contrast to p15 methylation in the acute cases, whereas TMS1 hypermethylation was absent in all cases. Furthermore, hypermethylation of multiple genes per patient was observed, with obvious selectiveness in the 9p21 chromosomal region genes (p14, p15 and p16). Interestingly, methylation of p15 increased the risk of methylation in p53, and vice versa, by five folds (p=0.03) indicating possible synergistic epigenetic disruption of different phases of the cell cycle or between the cell cycle and apoptosis. The investigation of multiple relationships between methylated genes might shed light on tumor specific inactivation of the cell cycle and apoptotic pathways.
Collapse
Affiliation(s)
- Khaldon Bodoor
- Department of Biology, Jordan University of Science and Technology, Irbid, Jordan E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
3
|
FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia. Ann Hematol 2013; 93:577-93. [PMID: 24030729 DOI: 10.1007/s00277-013-1898-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
Abstract
Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.
Collapse
|
4
|
Silkjaer T, Nørgaard JM, Aggerholm A, Ebbesen LH, Kjeldsen E, Hokland P, Nyvold CG. Characterization and prognostic significance of mitochondrial DNA variations in acute myeloid leukemia. Eur J Haematol 2013; 90:385-96. [DOI: 10.1111/ejh.12090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Trine Silkjaer
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Anni Aggerholm
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | | - Eigil Kjeldsen
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | - Peter Hokland
- Department of Haematology; Aarhus University Hospital; Aarhus; Denmark
| | | |
Collapse
|
5
|
Forshew T, Tatevossian RG, Lawson ARJ, Ma J, Neale G, Ogunkolade BW, Jones TA, Aarum J, Dalton J, Bailey S, Chaplin T, Carter RL, Gajjar A, Broniscer A, Young BD, Ellison DW, Sheer D. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 2009; 218:172-81. [PMID: 19373855 DOI: 10.1002/path.2558] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report genetic aberrations that activate the ERK/MAP kinase pathway in 100% of posterior fossa pilocytic astrocytomas, with a high frequency of gene fusions between KIAA1549 and BRAF among these tumours. These fusions were identified from analysis of focal copy number gains at 7q34, detected using Affymetrix 250K and 6.0 SNP arrays. PCR and sequencing confirmed the presence of five KIAA1549-BRAF fusion variants, along with a single fusion between SRGAP3 and RAF1. The resulting fusion genes lack the auto-inhibitory domains of BRAF and RAF1, which are replaced in-frame by the beginning of KIAA1549 and SRGAP3, respectively, conferring constitutive kinase activity. An activating mutation of KRAS was identified in the single pilocytic astrocytoma without a BRAF or RAF1 fusion. Further fusions and activating mutations in BRAF were identified in 28% of grade II astrocytomas, highlighting the importance of the ERK/MAP kinase pathway in the development of paediatric low-grade gliomas.
Collapse
Affiliation(s)
- Tim Forshew
- Neuroscience Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Institute of Cell and Molecular Science, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bacher U, Haferlach C, Schnittger S, Kern W, Kroeger N, Zander AR, Haferlach T. Interactive diagnostics in the indication to allogeneic SCT in AML. Bone Marrow Transplant 2009; 43:745-56. [DOI: 10.1038/bmt.2009.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Shimada A, Taki T, Tabuchi K, Taketani T, Hanada R, Tawa A, Tsuchida M, Horibe K, Tsukimoto I, Hayashi Y. Tandem duplications of MLL and FLT3 are correlated with poor prognoses in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer 2008; 50:264-9. [PMID: 17763464 DOI: 10.1002/pbc.21318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mixed-lineage leukemia (MLL)-partial tandem duplication (PTD) is associated with poor prognosis in adult acute myeloid leukemia (AML), but its relationship to pediatric AML is unknown. PROCEDURE One hundred fifty-eight newly diagnosed AML patients, including 13 FAB-M3 and 10 Down syndrome (DS) patients, who were treated on the Japanese Childhood AML Cooperative Treatment Protocol AML 99 were analyzed for MLL-PTD, as well as internal tandem duplication (ITD) and the kinase domain mutation (D835Mt) in the FLT3 gene. RESULTS We found MLL-PTD in 21 (13.3%) of 158 AML patients, but not in FAB-M3 or DS patients. The differences between patients with and without MLL-PTD were significant for 3-year overall survival (OS) (56.3% vs. 83.2%, P = 0.018), disease-free survival (DFS) (41.7% vs. 69.6%, P = 0.010), and relapse rate (RR) (54.3% vs. 27.6%, P = 0.0085) of 135 AML patients excluding the FAB-M3 and DS patients. Furthermore, ITD and D835Mt in the FLT3 gene were found in 17 (12.6%) and 8 (5.9%) of these 135 patients, respectively. The differences between patients with FLT3-ITD and the wild-type allele were significant for 3-year OS (35.3% and 84.3%, P < 0.0000001), DFS (40.0% and 66.9%, P < 0.003), and RR (52.4% and 30.3%, P < 0.005). Coduplication of both genes was found in only 3 (1.9%) patients. CONCLUSION AML patients with FLT3-ITD, but not D835Mt, showed a poor prognosis. AML patients with MLL-PTD were also correlated with poor prognosis in this study.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Hematology/Oncology, Gunma Children's Medical Center, 779 Shimohakoda, Hokkitsu, Shibukawa, Gunma 377-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Haferlach T. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:400-411. [PMID: 19074117 DOI: 10.1182/asheducation-2008.1.400] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The heterogeneity of acute myeloid leukemia (AML) results from a complex network of cytogenetic aberrations and molecular mutations. These genetic markers are the basis for the categorization of cases within distinct subgroups and are highly relevant for the prediction of prognosis and for therapeutic decisions in AML. Clinical variances within distinct genetically defined subgroups could in part be linked to the interaction of diverse mutation classes, and the subdivision of normal karyotype AML on the basis of recurrent molecular mutations gains increasing relevance for therapeutic decisions. In parallel to these important insights in the complexity of the genetic networks in AML, a variety of diverse new compounds is being investigated in preclinical and clinical studies. These approaches aim to develop targeted treatment concepts that are based on interference with molecular genetic or epigenetic mechanisms. This review provides an overview on the most relevant genetic markers, which serve as basis for targeted therapy approaches now or might represent options for such approaches in the future, and summarizes recent results of targeted therapy studies.
Collapse
|
9
|
Haferlach T, Bacher U, Haferlach C, Kern W, Schnittger S. Insight into the molecular pathogenesis of myeloid malignancies. Curr Opin Hematol 2007; 14:90-7. [PMID: 17255785 DOI: 10.1097/moh.0b013e3280168490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Molecular mutations play an increasing role for classification, prognostication, and therapeutic strategies in acute myeloid leukemia and myelodysplastic syndrome. Due to the rapid expansion of known molecular markers, this paper aims to outline some of the recent progress to improve understanding of the pathogenesis in these myeloid malignancies. RECENT FINDINGS Novel concepts conceive myelodysplastic syndrome and acute myeloid leukemia as endpoints of a continuous process of leukemogenesis, which is characterized by the interaction of mutations interfering with transcription and differentiation with activating mutations enhancing proliferation. The detection of novel molecular mutations such as NPM1 widened the spectrum of molecular markers in acute myeloid leukemia. Finally, attention focusses on detailed subtyping of already known molecular markers. SUMMARY The fast progress in the molecular characterization of acute myeloid leukemia and myelodysplastic syndrome in recent years provides the basis for an optimization of therapeutic concepts. The introduction of new methods such as gene expression profiling catalyzes this process.
Collapse
|
10
|
Basecke J, Whelan JT, Griesinger F, Bertrand FE. The MLL partial tandem duplication in acute myeloid leukaemia. Br J Haematol 2006; 135:438-49. [PMID: 16965385 DOI: 10.1111/j.1365-2141.2006.06301.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mixed lineage leukaemia gene-partial tandem duplications (MLL-PTD) characterise acute myeloid leukaemia (AML) with trisomy 11 and AML with a normal karyotype. MLL-PTD confer a worse prognosis with shortened overall and event free survival in childhood and adult AML. In spite of these clinical observations, the leukaemogenic mechanism has, so far, not been determined. This review summarises clinical studies on MLL-PTD positive AML and recent experimental findings on the putative leukaemogenic role of MLL-PTD.
Collapse
Affiliation(s)
- Jorg Basecke
- Division of Haematology and Oncology, University of Goettingen, Goettingen, Germany.
| | | | | | | |
Collapse
|
11
|
Clinical implications of gene expression profiling of acute myeloid leukemia. Curr Hematol Malig Rep 2006; 1:114-21. [DOI: 10.1007/s11899-006-0022-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Rethmeier A, Aggerholm A, Olesen LH, Juhl-Christensen C, Nyvold CG, Guldberg P, Hokland P. Promoter hypermethylation of the retinoic acid receptor beta2 gene is frequent in acute myeloid leukaemia and associated with the presence of CBFbeta-MYH11 fusion transcripts. Br J Haematol 2006; 133:276-83. [PMID: 16643429 DOI: 10.1111/j.1365-2141.2006.06014.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silencing of the putative tumour suppressor gene retinoic acid receptor beta2 (RARbeta2) caused by aberrant promoter hypermethylation has been identified in several solid tumours. In order to evaluate the extent of RARbeta2 hypermethylation and transcription in acute myeloid leukaemia (AML) at diagnosis, 320 patients were investigated by bisulphite-denaturing gradient gel electrophoresis and mRNA transcription levels were analysed in 61 of these by quantitative real-time polymerase chain reaction. The results were compared with demographic- and molecular data from the patients. While RARbeta2 was unmethylated in 10/10 bone marrow and 7/7 blood samples from healthy individuals, the gene was hypermethylated in 43% of the AML patients. The RARbeta2 degree of promoter methylation differed between and within individuals, and the mRNA transcription levels of the gene varied inter-individually by a factor of 4000. A significant inverse correlation between promoter hypermethylation and gene expression could be established (t-test, P = 0.019). Comparison of methylation data with a series of other molecular alterations in the same patient materials revealed a correlation between hypermethylation of the RARbeta2 promoter and the presence of CBF-MYH11 fusion transcripts (P < 0.01). Our data suggest that RARbeta2 promoter methylation is frequent in AML and may co-operate with the expression of CBF-MYH11 fusion transcripts in leukaemogenesis.
Collapse
Affiliation(s)
- Anita Rethmeier
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|