Zhao Z, Liu W, Su Y, Zhu J, Zheng G, Luo Q, Jin X. Evaluation of biodistribution and safety of adenovirus vector containing MDR1 in mice.
J Exp Clin Cancer Res 2010;
29:1. [PMID:
20044941 PMCID:
PMC2819043 DOI:
10.1186/1756-9966-29-1]
[Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 01/04/2010] [Indexed: 11/28/2022] Open
Abstract
Background
The aim of this study is to examine the safety and distribution of Ad-EGFP-MDR1, an adenovirus encoding human multidurg resistance gene (human MDR1), in the mice colon carcinoma model.
Methods
After bone marrow cells (BMCs) were infected with Ad-EGFP-MDR1, they were administered by intra bone marrow-bone marrow transplantation (IBM-BMT). Total adenovirus antibody and serum adenovirus neutralizing factor (SNF) were determined. Biodistribution of Ad-EGFP-MDR1 was detected by in situ hybridization and immunohistochemistry. The peripheral hematocyte white blood cell (WBC), haemoglobin (Hb), red blood cell (RBC) and platelet (Plt) counts were analyzed.
Results
Neither total adenovirus antibody nor SNF increased weeks after BMT. In situ hybridization and immunohistochemistry demonstrated concordant expression of human MDR1 and P-gp which were found in lung, intestine, kidney and BMCs after BMT, but not detected in liver, spleen, brain and tumor. No significant abnormality of the recovery hematocyte was observed on Day 30 after treatment.
Conclusion
The results indicate that IBM-BMT administration of a replication defective adenovirus is a feasible mode of delivery, allowing exogenous transference. The findings in this study are conducted for the future long-term studies of safety assessment of Ad-EGFP-MDR1.
Collapse