3
|
Foong WC, Loh CK, Ho JJ, Lau DS. Foetal haemoglobin inducers for reducing blood transfusion in non-transfusion-dependent beta-thalassaemias. Cochrane Database Syst Rev 2023; 1:CD013767. [PMID: 36637054 PMCID: PMC9837847 DOI: 10.1002/14651858.cd013767.pub2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Non-transfusion-dependent β-thalassaemia (NTDβT) is a subset of inherited haemoglobin disorders characterised by reduced production of the β-globin chain of haemoglobin leading to anaemia of varying severity. Although blood transfusion is not a necessity for survival, it may be required to prevent complications of chronic anaemia, such as impaired growth and hypercoagulability. People with NTDβT also experience iron overload due to increased iron absorption from food sources which becomes more pronounced in those requiring blood transfusion. People with a higher foetal haemoglobin (HbF) level have been found to require fewer blood transfusions, thus leading to the emergence of treatments that could increase its level. HbF inducers stimulate HbF production without altering any gene structures. Evidence for the possible benefits and harms of these inducers is important for making an informed decision on their use. OBJECTIVES To compare the effectiveness and safety of the following for reducing blood transfusion for people with NTDβT: 1. HbF inducers versus usual care or placebo; 2. single HbF inducer with another HbF inducer, and single dose with another dose; and 3. combination of HbF inducers versus usual care or placebo, or single HbF inducer. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 21 August 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) or quasi-RCTs comparing single HbF inducer with placebo or usual care, with another single HbF inducer or with a combination of HbF inducers; or comparing different doses of the same HbF inducer. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were blood transfusion and haemoglobin levels. Our secondary outcomes were HbF levels, the long-term sequelae of NTDβT, quality of life and adverse events. MAIN RESULTS We included seven RCTs involving 291 people with NTDβT, aged two to 49 years, from five countries. We reported 10 comparisons using eight different HbF inducers (four pharmacological and four natural): three RCTs compared a single HbF inducer to placebo and seven to another HbF inducer. The duration of the intervention lasted from 56 days to six months. Most studies did not adequately report the randomisation procedures or whether and how blinding was achieved. HbF inducer against placebo or usual care Three HbF inducers, HQK-1001, Radix Astragali or a 3-in-1 combined natural preparation (CNP), were compared with a placebo. None of the comparisons reported the frequency of blood transfusion. We are uncertain whether Radix Astragali and CNP increase haemoglobin at three months (mean difference (MD) 1.33 g/dL, 95% confidence interval (CI) 0.54 to 2.11; 1 study, 2 interventions, 35 participants; very low-certainty evidence). We are uncertain whether Radix Astragali and CNP have any effect on HbF (MD 12%, 95% CI -0.74% to 24.75%; 1 study, 2 interventions, 35 participants; very low-certainty evidence). Only medians on haemoglobin and HbF levels were reported for HQK-1001. Adverse effects reported for HQK-1001 were nausea, vomiting, dizziness and suprapubic pain. There were no prespecified adverse effects for Radix Astragali and CNP. HbF inducer versus another HbF inducer Four studies compared a single inducer with another over three to six months. Comparisons included hydroxyurea versus resveratrol, hydroxyurea versus thalidomide, hydroxyurea versus decitabine and Radix Astragali versus CNP. No study reported our prespecified outcomes on blood transfusion. Haemoglobin and HbF were reported for the comparison Radix Astragali versus CNP, but we are uncertain whether there were any differences (1 study, 24 participants; low-certainty evidence). Different doses of the same HbF inducer Two studies compared two different types of HbF inducers at different doses over two to six months. Comparisons included hydroxyurea 20 mg/kg/day versus 10 mg/kg/day and HQK-1001 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day and 40 mg/kg/day. Blood transfusion, as prespecified, was not reported. In one study (61 participants) we are uncertain whether the lower levels of both haemoglobin and HbF at 24 weeks were due to the higher dose of hydroxyurea (haemoglobin: MD -2.39 g/dL, 95% CI -2.80 to -1.98; very low-certainty evidence; HbF: MD -10.20%, 95% CI -16.28% to -4.12%; very low-certainty evidence). The study of the four different doses of HQK-1001 did not report results for either haemoglobin or HbF. We are not certain if major adverse effects may be more common with higher hydroxyurea doses (neutropenia: risk ratio (RR) 9.93, 95% CI 1.34 to 73.97; thrombocytopenia: RR 3.68, 95% CI 1.12 to 12.07; very low-certainty evidence). Taking HQK-1001 20 mg/kg/day may result in the fewest adverse effects. A combination of HbF inducers versus a single HbF inducer Two studies compared three combinations of two inducers with a single inducer over six months: hydroxyurea plus resveratrol versus resveratrol or hydroxyurea alone, and hydroxyurea plus l-carnitine versus hydroxyurea alone. Blood transfusion was not reported. Hydroxyurea plus resveratrol may reduce haemoglobin compared with either resveratrol or hydroxyurea alone (MD -0.74 g/dL, 95% CI -1.45 to -0.03; 1 study, 54 participants; low-certainty evidence). We are not certain whether the gastrointestinal disturbances, headache and malaise more commonly reported with hydroxyurea plus resveratrol than resveratrol alone were due to the interventions. We are uncertain whether hydroxyurea plus l-carnitine compared with hydroxyurea alone may increase mean haemoglobin, and reduce pulmonary hypertension (1 study, 60 participants; very low-certainty evidence). Adverse events were reported but not in the intervention group. None of the comparisons reported the outcome of HbF. AUTHORS' CONCLUSIONS We are uncertain whether any of the eight HbF inducers in this review have a beneficial effect on people with NTDβT. For each of these HbF inducers, we found only one or at the most two small studies. There is no information on whether any of these HbF inducers have an effect on our primary outcome, blood transfusion. For the second primary outcome, haemoglobin, there may be small differences between intervention groups, but these may not be clinically meaningful and are of low- to very low-certainty evidence. Data on adverse effects and optimal doses are limited. Five studies are awaiting classification, but none are ongoing.
Collapse
Affiliation(s)
- Wai Cheng Foong
- Department of Paediatrics, RCSI & UCD Malaysia Campus (formerly Penang Medical College), George Town, Malaysia
| | - C Khai Loh
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Malaysia
| | - Jacqueline J Ho
- Department of Paediatrics, RCSI & UCD Malaysia Campus (formerly Penang Medical College), George Town, Malaysia
| | - Doris Sc Lau
- Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Malaysia
| |
Collapse
|
4
|
Leiva O, Ren S, Neuberg D, Bhatt A, Jenkins A, Rosovsky R, Karp Leaf R, Goodarzi K, Hobbs G. Pulmonary hypertension is associated with poor cardiovascular and hematologic outcomes in patients with myeloproliferative neoplasms and cardiovascular disease. Int J Hematol 2023; 117:90-99. [PMID: 36183283 DOI: 10.1007/s12185-022-03454-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023]
Abstract
Cardiovascular events and hematologic progression to myelofibrosis or leukemia are leading causes of morbidity and mortality among patients with myeloproliferative neoplasms (MPN). Pulmonary hypertension (PH) is also associated with MPN and cardiovascular disease (CVD), though its prognostic significance in MPN is not well characterized. Our primary objective was to investigate the effect of PH, defined as right-ventricular systolic pressure (RVSP) ≥ 50 mmHg on echocardiogram or mean pulmonary artery pressure (mPAP) ≥ 20 on right heart catheterization, on cardiovascular and all-cause mortality and hematologic progression in patients with MPN and CVD (atrial fibrillation, heart failure hospitalization, and myocardial infarction after MPN diagnosis). Of the 197 patients included (86 ET, 80 PV, 31 PMF), 92 (47%) had PH and 98 (50%) were male. All-cause mortality (58 vs 37%, p = 0.004), cardiovascular death (35 vs 9%, p < 0.0001), and hematologic progression (23 vs 11%, p = 0.037) occurred more frequently in patients with PH. Multivariable competing-risk and proportional hazards regression showed that PH was associated with increased risk of all-cause death (adjusted hazard ratio [HR], 1.80, 95% CI 1.10-2.93), CV death (adjusted subdistribution HR 3.71, 95% CI 1.58-8.73), and hematologic progression (adjusted subdistribution HR 1.99, 95% CI 1.21-3.27).
Collapse
Affiliation(s)
- Orly Leiva
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Cardiovascular Medicine, Department of Medicine, New York University Langone Health, New York, NY, USA
| | - Siyang Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ankeet Bhatt
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Jenkins
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel Rosovsky
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Rebecca Karp Leaf
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Katayoon Goodarzi
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Gabriela Hobbs
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, USA.
| |
Collapse
|
6
|
Asadov C, Alimirzoeva Z, Mammadova T, Aliyeva G, Gafarova S, Mammadov J. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol 2018; 108:5-21. [PMID: 29380178 DOI: 10.1007/s12185-018-2411-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/19/2023]
Abstract
β-Thalassemia intermedia is a clinical condition of intermediate gravity between β-thalassemia minor, the asymptomatic carrier, and β-thalassemia major, the transfusion-dependent severe anemia. It is characterized by a significant clinical polymorphism, which is attributable to its genetic heterogeneity. Ineffective erythropoiesis, chronic anemia, and iron overload contribute to the clinical complications of thalassemia intermedia through stepwise pathophysiological mechanisms. These complications, including splenomegaly, extramedullary erythropoiesis, iron accumulation, leg ulcers, thrombophilia, and bone abnormalities can be managed via fetal hemoglobin induction, occasional transfusions, chelation, and in some cases, stem cell transplantation. Given its clinical diversity, thalassemia intermedia patients require tailored approaches to therapy. Here we present an overview and novel approaches to the genetic basis, pathophysiological mechanisms, clinical complications, and optimal management of thalassemia intermedia.
Collapse
Affiliation(s)
- Chingiz Asadov
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan.
| | - Zohra Alimirzoeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Tahira Mammadova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Gunay Aliyeva
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Shahla Gafarova
- Institute of Hematology and Transfusiology, M. Gashgai Str. 87, AZ1007, Baku, Azerbaijan
| | - Jeyhun Mammadov
- Thalassemia Centre, Fataly Khan Khoysky Str. 128, AZ1072, Baku, Azerbaijan
| |
Collapse
|
10
|
Derchi G, Galanello R, Bina P, Cappellini MD, Piga A, Lai ME, Quarta A, Casu G, Perrotta S, Pinto V, Musallam KM, Forni GL. Prevalence and Risk Factors for Pulmonary Arterial Hypertension in a Large Group of β-Thalassemia Patients Using Right Heart Catheterization. Circulation 2014; 129:338-45. [DOI: 10.1161/circulationaha.113.002124] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Giorgio Derchi
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Renzo Galanello
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Patrizio Bina
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Maria Domenica Cappellini
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Antonio Piga
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Maria-Eliana Lai
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Antonella Quarta
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Gavino Casu
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Silverio Perrotta
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Valeria Pinto
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Khaled M. Musallam
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| | - Gian Luca Forni
- From the Galliera Hospital, Genoa, Italy (G.D., V.P., G.L.F.); University of Cagliari, Cagliari, Italy (R.G., P.B., M.-E.L.); IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, University of Milan, Milan, Italy (M.D.C., K.M.M.); University of Turin, Turin, Italy (A.P.); Perrino Hospital, Brindisi, Italy (A.Q.); S. Francesco Hospital, Nuoro, Italy (G.C.); and Seconda University, Naples, Italy (S.P.)
| |
Collapse
|