1
|
Klotz DM, Link T, Goeckenjan M, Wimberger P, Kuhlmann JD. The levels of soluble cMET ectodomain in the blood of patients with ovarian cancer are an independent prognostic biomarker. Mol Oncol 2021; 15:2491-2503. [PMID: 33690968 PMCID: PMC8410524 DOI: 10.1002/1878-0261.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tyrosine kinase mesenchymal–epithelial transition (cMET) is typically overexpressed in up to 75% of patients with ovarian cancer, and cMET overexpression has been associated with poor prognosis. The proteolytic release of the soluble cMET (sMET) ectodomain by metalloproteases, a process called ectodomain shedding, reflects the malignant potential of tumour cells. sMET can be detected in the human circulation and has been proposed as biomarker in several cancers. However, the clinical relevance of sMET in ovarian cancer as blood‐based biomarker is unknown and was therefore investigated in this study. sMET levels were determined by enzyme‐linked immunosorbent assay in a set of 432 serum samples from 85 healthy controls and 86 patients with ovarian cancer (87% FIGO III/IV). Samples were collected at primary diagnosis, at four longitudinal follow‐up time points during the course of treatment and at disease recurrence. Although there was no significant difference between median sMET levels at primary diagnosis of ovarian cancer vs. healthy controls, increased sMET levels at primary diagnosis were an independent predictor of shorter PFS (HR = 0.354, 95% CI: 0.130–0.968, P = 0.043) and shorter OS (HR = 0.217, 95% CI: 0.064–0.734, P = 0.014). In the follow‐up samples, sMET levels were prognostically most informative after the first three cycles of chemotherapy, with high sMET levels being an independent predictor of shorter PFS (HR = 0.245, 95% CI: 0.100–0.602, P = 0.002). This is the first study to suggest that sMET levels in the blood can be used as an independent prognostic biomarker for ovarian cancer. Patients at high risk of recurrence and with poor prognosis, as identified based on sMET levels in the blood, could potentially benefit from cMET‐directed therapies or other targeted regimes, such as PARP inhibitors or immunotherapy.
Collapse
Affiliation(s)
- Daniel Martin Klotz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Maren Goeckenjan
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumour Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
2
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
3
|
Giannoni P, Fais F, Cutrona G, Totero DD. Hepatocyte Growth Factor: A Microenvironmental Resource for Leukemic Cell Growth. Int J Mol Sci 2019; 20:ijms20020292. [PMID: 30642077 PMCID: PMC6359660 DOI: 10.3390/ijms20020292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: (i) enhances CLL cells survival and (ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genoa, V. Pastore 3, 16132 Genova, Italy.
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| |
Collapse
|
4
|
Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108:296-307. [PMID: 28064454 PMCID: PMC5378267 DOI: 10.1111/cas.13156] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Signaling driven by hepatocyte growth factor (HGF) and MET receptor facilitates conspicuous biological responses such as epithelial cell migration, 3‐D morphogenesis, and survival. The dynamic migration and promotion of cell survival induced by MET activation are bases for invasion–metastasis and resistance, respectively, against targeted drugs in cancers. Recent studies indicated that MET in tumor‐derived exosomes facilitates metastatic niche formation and metastasis in malignant melanoma. In lung cancer, gene amplification‐induced MET activation and ligand‐dependent MET activation in an autocrine/paracrine manner are causes for resistance to epidermal growth factor receptor tyrosine kinase inhibitors and anaplastic lymphoma kinase inhibitors. Hepatocyte growth factor secreted in the tumor microenvironment contributes to the innate and acquired resistance to RAF inhibitors. Changes in serum/plasma HGF, soluble MET (sMET), and phospho‐MET have been confirmed to be associated with disease progression, metastasis, therapy response, and survival. Higher serum/plasma HGF levels are associated with therapy resistance and/or metastasis, while lower HGF levels are associated with progression‐free survival and overall survival after treatment with targeted drugs in lung cancer, gastric cancer, colon cancer, and malignant melanoma. Urinary sMET levels in patients with bladder cancer are higher than those in patients without bladder cancer and associated with disease progression. Some of the multi‐kinase inhibitors that target MET have received regulatory approval, whereas none of the selective HGF‐MET inhibitors have shown efficacy in phase III clinical trials. Validation of the HGF‐MET pathway as a critical driver in cancer development/progression and utilization of appropriate biomarkers are key to development and approval of HGF‐MET inhibitors for clinical use.
Collapse
Affiliation(s)
- Kunio Matsumoto
- Division of Tumor Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masataka Umitsu
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Dinuka M De Silva
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Arpita Roy
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Miller MA, Sullivan RJ, Lauffenburger DA. Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res 2016; 23:623-629. [PMID: 27895032 DOI: 10.1158/1078-0432.ccr-16-0869] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Proteases known as sheddases cleave the extracellular domains of their substrates from the cell surface. The A Disintegrin and Metalloproteinases ADAM10 and ADAM17 are among the most prominent sheddases, being widely expressed in many tissues, frequently overexpressed in cancer, and promiscuously cleaving diverse substrates. It is increasingly clear that the proteolytic shedding of transmembrane receptors impacts pathophysiology and drug response. Receptor substrates of sheddases include the cytokine receptors TNFR1 and IL6R; the Notch receptors; type-I and -III TGFβ receptors; receptor tyrosine kinases (RTK) such as HER2, HER4, and VEGFR2; and, in particular, MET and TAM-family RTKs AXL and Mer (MerTK). Activation of receptor shedding by mechanical cues, hypoxia, radiation, and phosphosignaling offers insight into mechanisms of drug resistance. This particularly holds for kinase inhibitors targeting BRAF (such as vemurafenib and dabrafenib) and MEK (such as trametinib and cobimetinib), along with direct sheddase inhibitors. Receptor proteolysis can be detected in patient fluids and is especially relevant in melanoma, glioblastoma, lung cancer, and triple-negative breast cancer where RTK substrates, MAPK signaling, and ADAMs are frequently dysregulated. Translatable strategies to exploit receptor shedding include combination kinase inhibitor regimens, recombinant decoy receptors based on endogenous counterparts, and, potentially, immunotherapy. Clin Cancer Res; 23(3); 623-9. ©2016 AACR.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan J Sullivan
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Kim H, Youk J, Yang Y, Kim TY, Min A, Ham HS, Cho S, Lee KH, Keam B, Han SW, Oh DY, Ryu HS, Han W, Park IA, Kim TY, Noh DY, Im SA. Prognostic implication of serum hepatocyte growth factor in stage II/III breast cancer patients who received neoadjuvant chemotherapy. J Cancer Res Clin Oncol 2015; 142:707-14. [PMID: 26577828 DOI: 10.1007/s00432-015-2072-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE In stage II/III breast cancer, neoadjuvant chemotherapy (NAC) is a standard treatment. Although several biomarkers are used to predict prognosis in breast cancer, there is no reliable predictive biomarker for NAC success. Recently, the hepatocyte growth factor (HGF) and cMet signaling pathway demonstrated to be involved in breast cancer tumor progression, and its potential as a biomarker is under active investigation. In this study, we assessed the potential of serum HGF as a prognostic biomarker for NAC efficacy. METHODS Venous blood samples were drawn from patients diagnosed with stage II/III breast cancer and treated with NAC in Seoul National University Hospital from August 2004 to November 2009. Serum HGF level was determined using an ELISA system. We reviewed the medical records of the patients and investigated the association of HGF level with patients' clinicopathologic characteristics. RESULTS A total of 121 female patients (median age = 45 years old) were included. Median level of HGF was 934 pg/ml (lower quartile: 772, upper quartile: 1145 pg/ml). Patients with higher HGF level than median value were significantly more likely to have clinically detectable regional node metastasis (p = 0.017, Fisher's exact test). Patients with complete and partial response according to the American Joint Committee on Cancer 7th Edition criteria tended to have higher HGF level (p = 0.105 by t test). Patients with an HGF level higher than the upper quartile value had longer relapse-free survival than the other patients (106 vs. 85 months, p = 0.008). CONCLUSIONS High serum HGF levels in breast cancer patients are associated with clinically detectable regional node metastasis and, paradoxically, with longer relapse-free survival in stage II/III breast cancer.
Collapse
Affiliation(s)
- Hyori Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Yaewon Yang
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea.
| | - Ahrum Min
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Hye-Seon Ham
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea
| | - Seongcheol Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - In Ae Park
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Pathology, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea.,Department of Surgery, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University College of Medicine, 101 Daehakro, Jongro-gu, Seoul, 110-799, Korea. .,Department of Internal Medicine, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul, 110-744, Korea.
| |
Collapse
|
7
|
Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn 2015; 15:881-93. [PMID: 25967746 DOI: 10.1586/14737159.2015.1046436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The interaction between neoplastic cells and the microenvironment is critical in several cancers and plays a central role in multiple myeloma. Microenvironmental stimuli support plasma cell proliferation, survival, motility and can determine drug resistance. The network between plasma cells and surrounding cells is also responsible for increasing angiogenesis, unbalancing bone formation and bony lesions. The MET/HGF pathway is a key player in this interaction and has been found to be abnormally active in both malignant plasma cells and surrounding cells. Patients with abnormal MET and/or HGF levels usually have a poor outcome even when treated with novel drugs. This review addresses the role of MET/HGF in the pathogenesis of myeloma and describes the role of MET/HGF signaling as a prognostic factor. The different techniques to detect MET/HGF abnormalities are examined and a description of compounds targeting MET/HGF is also provided.
Collapse
Affiliation(s)
- Manuela Gambella
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | |
Collapse
|
8
|
Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:626578. [PMID: 25834821 PMCID: PMC4365312 DOI: 10.1155/2015/626578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/18/2022]
Abstract
c-Met has been demonstrated as an attractive target in lung cancer therapy. Current studies showed that detection of c-Met status in tumor is critical in Met-targeted therapy. However not all patients are suitable for tissue sample collection. It is important to discover novel surrogate markers to detect c-Met status. In the study, soluble c-Met (s-Met) in plasma from 146 Chinese lung cancer patients and 40 disease-free volunteers was measured by enzyme-linked immunosorbent. In parallel, expression of c-Met in those tumors was also assessed by immunohistochemistry. Results showed that, in 146 lung cancer patients, 93 were c-Met expression positive and 74 of 93 were overexpressed. In c-Met-overexpressed patients, plasma s-Met was significantly increased. And further studies showed that plasma s-Met linearly correlated with c-Met expression in tumor. After tumor was removed in Met-overexpressed patients via resection, plasma s-Met significantly decreased to basal level. In addition, plasma s-Met showed to be poorly correlated with tumor size in Met-overexpressed patients. These results demonstrated that plasma s-Met is a sensitive and reliable marker to detect c-Met overexpression in lung cancers, and it is independent of tumor volume.
Collapse
|
9
|
Byrne M, Katz J, Moreb J. Multiple Myeloma and Evolution of Novel Biomarkers and Therapies. Cancer Biomark 2014. [DOI: 10.1201/b16389-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Mai E, Zheng Z, Chen Y, Peng J, Severin C, Filvaroff E, Romero M, Mallet W, Kaur S, Gelzleichter T, Nijem I, Merchant M, Young JC. Nonclinical evaluation of the serum pharmacodynamic biomarkers HGF and shed MET following dosing with the anti-MET monovalent monoclonal antibody onartuzumab. Mol Cancer Ther 2013; 13:540-52. [PMID: 24258345 DOI: 10.1158/1535-7163.mct-13-0494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Onartuzumab, a humanized, monovalent monoclonal anti-MET antibody, antagonizes MET signaling by inhibiting binding of its ligand, hepatocyte growth factor (HGF). We investigated the effects of onartuzumab on cell-associated and circulating (shed) MET (sMET) and circulating HGF in vitro and nonclinically to determine their utility as pharmacodynamic biomarkers for onartuzumab. Effects of onartuzumab on cell-associated MET were assessed by flow cytometry and immunofluorescence. sMET and HGF were measured in cell supernatants and in serum or plasma from multiple species (mouse, cynomolgus monkey, and human) using plate-based immunoassays. Unlike bivalent anti-MET antibodies, onartuzumab stably associates with MET on the surface of cells without inducing MET internalization or shedding. Onartuzumab delayed the clearance of human xenograft tumor-produced sMET from the circulation of mice, and endogenous sMET in cynomolgus monkeys. In mice harboring MET-expressing xenograft tumors, in the absence of onartuzumab, levels of human sMET correlated with tumor size, and may be predictive of MET-expressing tumor burden. Because binding of sMET to onartuzumab in circulation resulted in increasing sMET serum concentrations due to reduced clearance, this likely renders sMET unsuitable as a pharmacodynamic biomarker for onartuzumab. There was no observed effect of onartuzumab on circulating HGF levels in xenograft tumor-bearing mice or endogenous HGF in cynomolgus monkeys. Although sMET and HGF may serve as predictive biomarkers for MET therapeutics, these data do not support their use as pharmacodynamic biomarkers for onartuzumab.
Collapse
Affiliation(s)
- Elaine Mai
- Corresponding Author: Judy C. Young, Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, MS98, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fu L, Guo W, Liu B, Sun L, Bi Z, Zhu L, Wang X, Liu B, Xie Q, Li K. Shedding of c-Met ectodomain correlates with c-Met expression in non-small cell lung cancer. Biomarkers 2013; 18:126-35. [PMID: 23410046 DOI: 10.3109/1354750x.2012.751455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of this study is to reveal the correlation of shedding and expression of c-Met in non-small cell lung cancer (NSCLC) patient. MATERIALS AND METHODS We measured soluble c-Met and c-Met level in a panel of pre-clinical models and 197 advanced Chinese NSCLC patients by enzyme-linked immunosorbent assay and immunohistochemistry, respectively. RESULTS Shedding of soluble c-Met associates with total c-Met amount in pre-clinical models, and soluble c-Met correlates with both c-Met expression level and tumor size in human, high soluble c-Met predicts poorer outcome.
Collapse
Affiliation(s)
- Le Fu
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease. Br J Haematol 2013; 161:373-82. [PMID: 23431957 DOI: 10.1111/bjh.12270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/21/2013] [Indexed: 12/17/2022]
Abstract
Lytic bone disease (LBD) in multiple myeloma (MM) is caused by osteoclast hyperactivation and osteoblast inhibition. Based on in vitro studies, the hepatocyte growth factor (HGF) pathway is thought to be central in osteoblast inhibition. We evaluated the gene expression of the HGF pathway in vivo using bone marrow biopsies (BMBs) of patients with MM and monoclonal gammopathy of undetermined significance (MGUS), and healthy volunteers (HV). BMBs (N = 110) obtained at diagnosis were snap-frozen and used to evaluate gene expression by quantitative reverse transcription polymerase chain reaction. LBD was evaluated using standard radiographs. Enzyme-linked immunosorbent assay (ELISA) was performed on matched bone marrow plasma and immunohistochemistry on matched formalin-fixed paraffin-embedded biopsies. Gene expression of HGF, SDC1, and MET in BMBs were significantly altered in MM versus HV and MGUS, and HGF and MET correlated with the extent of LBD. A significant correlation between gene and protein expression levels was observed for SDC1 (Syndecan-1) and HGF. The HGF bone marrow plasma level was significantly lower in MM patients with no/limited versus advanced LBD. Our novel approach using snap-frozen BMBs seems generally applicable because it allows evaluation of gene expression independent of the extent of MM plasma-cell infiltration. Our study highlights the importance of the HGF pathway in MM LBD.
Collapse
Affiliation(s)
- Ida B Kristensen
- Department of Haematology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|